EXERCISES 3

REU SUMMER 2005

- 1. Use Roth' theorem to show that to every $0 < \delta < 1$ there is a number $c_{\delta} > 0$ depending only on δ , such that if $A \subset [1, N]$ and $|A| \ge \delta N$ then A contains at least $c_{\delta}N^2$ 3-progressions.
- 2. Let $0 < \delta < 1$, and let $0 < \alpha < \delta^2$ be given. Suppose $A \subset \mathbb{Z}_N$ such that $|A| = \delta N$. This exercise aims to show that if A is α - uniform, then it behaves like a random set when considering the size of its intersection with its translates: $A \cap (A + k)$. We expect $|A \cap (A + k)| = \delta^2 N$ in a random set.
 - a) Let $a_k = |A \cap (A+k)|$. Show that

$$s = \frac{1}{N} \sum_{k=0}^{N-1} a_k = \delta^2 N$$

b) Show that

$$\sum_{k=0}^{N-1} a_k^2 = \frac{1}{N} \sum_{r=0}^{N-1} |\hat{\chi}_A(r)|^4 \le (\delta^4 + \alpha^2)$$

c) Show that

$$\sum_{k=0}^{N-1} (a_k - s)^2 \le \alpha^2 N^3$$

d) Conclude that

$$|\{k \in \mathbb{Z}_N : |a_k - s| \ge \sqrt{\alpha}N\}| \le \alpha N$$

This means that for all but $\leq \alpha^2 N$ values of k:

$$(\delta^2 - \sqrt{\alpha})N \le |A \cap (A+k)| \le (\delta^2 + \sqrt{\alpha})N$$

3.* Generalize the proof of Roth' theorem to the following situation. Let a_1, \ldots, a_k be given integers, such that $a_1 + \ldots + a_k = 0$.

Prove that for any $0 < \delta < 1$ there exists a constant C > 0 (which may only depend on the numbers a_i), such that $N > \exp \exp(\delta^{-\frac{1}{k-2}})$ and if $A \subset [1, N]$ with $|A| = \delta N$ then A contains k mutually distinct numbers: x_1, \ldots, x_k , such that

$$a_1x_1 + \ldots + a_kx_k = 0$$

Note: This is (the translation invariant case of) Rado's theorem for a single equation. Roth' theorem is the case: $a_1 = a_2 = 1$, $a_3 = -2$.

REU SUMMER 2005

4. This is partly a computational problem. For given $0 < \delta < 1$, define the Roth number $R(\delta)$ as follows;

Let $R(\delta)$ be the smallest number R, such that if $N \ge R$ then for any $A \subset [1, N]$ with $|A| = \delta N$, A contains a 3-progression.

- a) Explain, why $R(1/m) \ge W(3,m)$. Find R(2/3).
- b) Find a combinatorial argument to show the existence of R(1/2)

Hint: Assume A contains no 3-progression. Let A_0 be the set of even elements of A, and A_1 be the set odd elements of A, then one of them has at least |A|/2 elements, say $|A_0| \ge |A|/2$. Let b be the smallest element of A_0 and c be the largest.

Define the sets $B = \{(b+a)/2 : a \in A_0\}$, $C = \{(a+c)/2 : a \in A, a \neq b\}$. Show, that A, B, C are disjoint sets, and moreover none of them contains a 3-progression. On the other hand $|A \cup B \cup C| \geq 2|A| - 3 \geq N - 3$ and use Van der Waerden's theorem to get a contradiction if N is large enough.

c)* Can you modify the argument to show the existence of R(1/3)?

- d)* Use a computer (if necessary) to find R(1/2) and R(1/3).
- 5. A set S is called an d- dimensional square, if there exist: a, k_1, \ldots, k_d such that

 $S = \{a + \varepsilon_1 k_1 + \ldots + \varepsilon_d k_d : \varepsilon_i = 0 \text{ or } \varepsilon_i = 1 \text{ for all } 1 \le i \le d\}$

a) Use induction on d to show that if $A \subset Z_N$, and $|A| = \delta N$ then A contains at least $\delta^{2^d} N^{d+1} d$ -dimensional cubes.

b) Show that if A subset [1, N] and $|A| = \delta N$, then A contains at least $\delta^{2^d} N$ ddimensional cubes.

Hint: The idea of the induction in both cases, is that if $A \cap (A + k)$ contains a d-dimensional cube, then A contains a d + 1 dimensional cube. The case d = 2 on \mathbb{Z}_N was already discussed. For $A \subset [1, N]$, show that there is a k such that: $|A \cap (A + k)| \ge \delta^2/2 N$, by considering the "most popular difference" in A.