
ROTH’S THEOREM
THE FOURIER ANALYTIC APPROACH

NEIL LYALL

Roth’s Theorem. Let δ > 0 and N ≥ exp exp(Cδ−1) for some absolute constant C. Then any
A ⊂ {0, 1, . . . , N − 1} of size |A| = δN necessarily contains a (non-trivial) arithmetic progression
of length three.

1. Embedding the problem in ZN and the Fourier transform

If x, y, z are natural numbers and x + y = 2z then they form an arithmetic progression of length
three, which we’ll call briefly a 3-progression. Instead of counting these directly we shall instead
first count the number of triples x, y, z chosen from the set A which satisfy the same equation in
ZN , that is modulo N . Although in doing this we lose some information about the arithmetic
progessions in A, the up side is that we have now embedded the problem in a group on which we
can do Fourier analysis.

Recall that the (discrete) Fourier transform f̂ , of a function f : ZN → C is defined by

(1) f̂(k) =
N−1∑
x=0

f(x)e−
2πi
N

xk.

It is clear from the definition that f̂(0) =
∑

x f(x) and that for any k the Fourier coefficients satisfy
the inequality

(2) |f̂(k)| ≤
∑

x

|f(x)|.

Using this and the fact that the Fourier transform of
∑

y f(y)g(y − x) is f̂(k)ĝ(k) we see that

(3) |f̂(k)||ĝ(k)| ≤
∑

x

∣∣∣∑
y

f(y)g(y − x)
∣∣∣.

This inequality will be of crucial importance to us, it allows us to conclude that if two functions
f and g have at least one large Fourier coefficient in common, by which we mean they have size
proportional to N , then f must have a large inner product with at least one translate of g.

We shall also make use of Plancherel’s identity

(4)
∑

x

|f(x)|2 =
1
N

∑
k

|f̂(k)|2,

which is, at least in this setting, an immediate consequence of the orthogonality relation

(5)
1
N

N−1∑
k=0

e
2πi
N

xk =

{
1 x ≡ 0 mod N

0 otherwise.
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2. Outline of the Proof

We begin with A ⊂ {0, 1, . . . , N −1} with |A| = δN . We will take the liberty of assuming that N is
odd, if N is even we can always consider A instead as a subset of {0, 1, . . . , N}, this has the effect
of only changing the density very slightly1. Our stratagy could be roughly summarized as follows;

(i) If A is “suitably random”, then we shall be able to conclude that A contains many arithmetic
progressions of length three.

(ii) If A is not “suitably random”, then we shall show that there exists a long arithmetic
progression P such that A has increased density on P , that is

|A ∩ P | ≥ (δ + ε′)|P |,

for some ε′ > 0 that depends only on δ.

So if A is not “suitably random” then we turn our attention to a subset A1 ⊂ A (namely A ∩ P )
which has higher density in some sub-progression of the integers. We must then determine if A1

is “suitably random” or not, we iterate this argument until the theorem is proven. We shall show
that if A contains no 3-progressions then there must be a progression on which a subset of A has
density greater than one, which is absurd. For this argument to work, we must count the number of
necessary iterations to reach this density and ensure that we have not eliminated too many elements
in the process (in order to arrive at our contradiction we must ensure that our final progression is
non-empty).

3. A suitable notion of randomness

With the aid of the Fourier transform we can now count the number of solutions to the congruence

x + y ≡ 2z mod N,

with x, y, z ∈ A. Let N0 denote the number of triples solving the above congruence, then by the
orthogonality relation (5) and the definition of the Fourier transform one has

N0 =
∑
x∈A

∑
y∈A

∑
z∈A

1
N

N−1∑
k=0

e−
2πi
N

(x+y−2z)k =
1
N

N−1∑
k=0

1̂A(k)21̂A(−2k),

where 1A(x) denotes the characteristic function of the set A. Using the fact that 1̂A(0) = |A| = δN
we see that

N0 = δ3N2 +
1
N

N−1∑
k=1

1̂A(k)21̂A(−2k).

The leading term δ3N2 above is instructive as it is the number of solutions of the congruence if the
set A were random, obtained by selecting each natural number from 1 to N independently with
probability δ. Indeed after choosing say x and z arbitrarily from the set A, which can be done δ2N2

ways, the probability that y ≡ 2z − x mod N is in A is equal to δ. Thus if A is very uniformly
distributed among the numbers {0, 1, . . . , N−1} then we expect it to contain a lot of 3-progressions
mod N .

1 The new density δ′ satisfies (1− 1
N

)δ < δ′ < δ.
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Notice that if |1̂A(k)| ≤ εN for all k 6= 0, then it would follow from Plancherel’s identity that∣∣∣N−1∑
k=1

1̂A(k)21̂A(−2k)
∣∣∣ ≤ max

k 6=0
|1̂A(−2k)|

N−1∑
k=0

|1̂A(k)|2 ≤ εN2
N−1∑
x=0

|1A(x)|2 = εδN3,

and hence that

(6) N0 ≥ δ3N2 − εδN2.

We therefore see that the parameter ε that we introduced is, in the particular sense above, measuring
how close A is to being random. With this in mind we make the following definition.

Definition 1. We say that A is ε-uniform (or suitably random) if

|1̂A(k)| ≤ εN,

for all k = 1, . . . , N − 1.

4. Sets which are suitably random

It is clear from the discussion above, in particular inequality (6), that if ε < δ2/2 and A is ε-
uniform, then N0 ≥ δ3N2/2, that is A contains at least δ3N2/2 3-progressions mod N (including
the trivial ones). We must however distinguish between arithmetic progressions mod N (which we
shall refer to as ZN -progressions) and genuine arithmetic progressions (which we shall refer to as
Z-progressions). Let N denote the number of solutions in A of the equation x+ y = 2z, that is the
number of Z-progressions of length three that are contained in A.

The key observation is that if x, z ∈ MA = A∩ [N/3, 2N/3), then any ZN -progression will also be a
Z-progression. Using this fact and a slight modification of the argument above gives the following.

Lemma 1. If A is ε-uniform with ε < δ2

8 and |MA| ≥ δ
4N , then N ≥ δ3N2

32 .

Proof. As before we can write

N ≥ 1
N

N−1∑
k=0

1̂MA
(k)1̂A(k)1̂MA

(−2k) = δ|MA|2 +
1
N

N−1∑
k=1

1̂MA
(k)1̂A(k)1̂MA

(−2k).

It follows from the Cauchy-Schwarz inequality and Plancherel’s identity that∣∣∣N−1∑
k=1

1̂MA
(k)1̂A(k)1̂MA

(−2k)
∣∣∣ ≤ max

k 6=0
|1̂A(k)|

N−1∑
k=0

|1̂MA
(k)1̂MA

(−2k)|

≤ εN
(∑

k

|1̂MA
(k)|2

)1/2(∑
k

|1̂MA
(−2k)|2

)1/2

= εN
∑

k

|1̂MA
(k)|2

= εN2
∑

x

1MA
(x)

≤ εN2|MA|.

It now follows that if we take ε < δ2/8, then

N ≥ 1
2δ|MA|2 ≥ δ3N2/32. �
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So far we have not excluded the trivial 3-progressions x = y = z, fortunately there are only
|A| = δN of them. It is then easy to check that Lemma 1 guarantees the existence of a non-trivial
3-progression as long as one insists that N ≥ 8

δ2 .

Let us summarize what we have shown so far.

Proposition 1. Let A ⊂ {0, 1, . . . , N − 1} with |A| = δN . If A contains no non-trivial Z-
progressions of length three, then one of the following must hold.

(i) N ≤ 8δ−2

(ii) There exists a Z-progression P of length |P | ≥ N/3 such that

|A ∩ P | ≥ (δ + δ/8)|P |

(iii) A is not ε-uniform for any ε ≤ δ2/8

Proof. Parts (i) and (iii) follow from Lemma 1 and the discussion above. Possiblity (ii) is simply
the observation that if |MA| < δ

4N then

max{|A ∩ [0, N/3)|, |A ∩ [2N/3, N)|} ≥ 3δN/8 = 9δ/8 · (N/3). �

5. Sets which are not suitably random

Now we arrive at the heart of the proof, where we show that a set A which is not ε-uniform
necessarily has increased density on an arithmetic progression of large size.

We say that a ZN -progression P is non-overlapping if its length L and common difference d satisfy
dL < N , the point of such a definition being that a non-overlapping ZN -progression is a union of
two Z-progressions.

Lemma 2. Suppose that B′ is a non-overlapping ZN -progression on which A has density δ + ε′.
Then there is a Z-progression P of length at least 1

2ε′|B′| on which A has density at least δ + 1
2ε′.

Proof. Write B′ = P1 ∪ P2, with |P1| ≤ |P2|. If |P1| ≤ 1
2
ε′|B′|, then

|A ∩ P2| ≥ (δ + ε′)|B′| − |P1| ≥ (δ + 1
2
ε′)|B′| ≥ (δ + 1

2
ε′)|P2|,

while if this is not the case then both P1 and P2 must have length at least 1
2
ε′|B′| and

consequently A must have density at least δ + ε′ on one of them. �

So we now know how to pass from non-overlapping ZN -progressions to Z-progressions.

Lemma 3. If |1̂A(r)| ≥ εN for some r 6= 0, then there exists a non-overlapping ZN -progression B′

of length at least
√

N/4 such that

|A ∩B′| ≥ (δ + 1
4ε)|B′|.

For technical reasons it shall be convenient in the proof of Lemma 3 to consider functions of mean
value zero. We define the balanced function of A to be

fA(x) = 1A(x)− δ =

{
1− δ x ∈ A

− δ x /∈ A.

We note that indeed f̂A(0) =
∑

x fA(x) = 0 and that f̂A(k) = 1̂A(k) for all k 6= 0.
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Proof of Lemma 3. The key observation here is that if we write B′ = B + x, then

|A ∩ (B + x)| ≥ (δ + 1
4ε)|B| ⇐⇒

∑
y

fA(y)1B(y − x) ≥ 1
4ε|B|.

Therefore our aim is now to find a long arithmetic progression B whose Fourier transform at r is
also large, since by (3) this would imply that 1A(x) has a large inner product with a translate of
1B(x), which as we have just observed is exactly what we want.

Step 1: For any 1 ≤ r ≤ N−1 there exists a non-overlapping progression B of length at least
√

N/4
with the property that

|1̂B(r)| ≥ 1
2
|B|.

Proof of Step 1: Fix r. If we partition [0, N − 1]2 into less than N (say d
√

N − 1e2) equal squares
it follows from the ‘principle of the pigeons’, by considering either of the collections of pairs

{(0, 0), (1, r), . . . , (N − 1, (N − 1)r)}
or {(N − 1, 0), (N − 2, r), . . . , (0, (N − 1)r)},

that there exist integers 0 ≤ ` < k ≤ N − 1 such that both

k − ` ≤
√

N and r(k − `) ≤
√

N mod N.

Let d = k − `. Define B to be the following progression of length |B| = b
√

N/πc
with common difference d;

{. . . ,−2d,−d, 0, d, 2d, . . .}.
We then have ��c1B(r)− |B|

�� ≤
���X

x

1B(x)[e−
2πi
N

xr − 1]
���

≤
X

|`|≤ 1
2 |B|

|e−
2πi
N

`dr − 1|

< 1
2
|B|
� 2π|B|

√
N

2N

�
≤ 1

2
|B|.

Step 2: As advertised our ZN -progression B′ will be a translate of the ZN -progression B obtained
in Step 1. We must therefore now show that there is indeed a value of x for which∑

y

fA(y)1B(y − x) ≥ 1
4ε|B|.

Proof of Step 2: Let G(x) =
P

y fA(y)1B(y − x). It follows from Step 1,

the assumption that A is not ε-uniform, and (3) thatX
x

|G(x)| ≥ | bG(r)| ≥ 1
2
εN |B|.

Using the fact that G has mean value zero we the see thatX
x

{|G(x)|+ G(x)} ≥ 1
2
εN |B|,

and hence for some x we must have

|G(x)|+ G(x) ≥ 1
2
ε|B|,

which in turn implies that G(x) ≥ 1
4
ε|B| as required.

�

Combining the two lemmata of this section we obtain

Proposition 2. If |1̂A(r)| ≥ εN for some r 6= 0, then there exists a Z-progression P of length at
least 1

32ε
√

N such that
|A ∩ P | ≥ (δ + 1

8ε)|P |.
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6. Putting it all together and proving Roth’s theorem

Combining Propositions 1 and 2 gives the following.

Proposition 3. Let A ⊂ {0, 1, . . . , N −1} with |A| = δN and N ≥ 8δ−2. Then either A contains a
non-trivial Z-progression of length three, or there exists a Z-progression P of length |P | ≥ 1

256δ2
√

N
such that

|A ∩ P | ≥ (δ + 1
64δ2)|P |.

An easy iteration argument now concludes the proof of Roth’s theorem - with constant C < 100.

Proof of Roth’s Theorem. We assume that A contains no non-trivial 3-progressions. This will, for
N large enough, lead us to a contradiction.

Denote by P1 the Z-progression guaranteed to us by Proposition 3. We now identify P1 '
{0, 1, . . . N1 − 1} and A1 ' A ∩ P1 - by simply enumerating the elements of P1 in increasing
order. We know, by assumption, that A1 contains no (non-trivial) 3-progression. In addition we
know that |A1| = δ1N1, where N1 ≥ 1

256δ2
√

N and δ1 ≥ (δ + 1
64δ2).

We now iterate this argument. In doing so k = 64
δ times we arrive at a set Ak ⊂ {0, 1, . . . , Nk − 1}

with density δk ≥ δ + δ = 2δ since the density at each step is increasing by at least δ2

64 . After
another 64

2δ steps the density is increasing from 2δ to 4δ, . . .

• A density of at least 2`δ is reached in no more than 64
δ (1 + 1

2 + · · · + 1
2`−1 ) steps and

consequently a density exceeding one (in fact it grows to infinity) in no more than 128
δ

steps.

It is of course impossible for any subset of A to have density greater than one in a non-empty
Z-progression. We now calculate what bound must be imposed on N in order to guarantee that
after this number of steps we have not eliminated all of our elements.

At each step of the iteration the size of the subprogression chosen is about the square root of the
progression of the previous step. After the first step the size of the progression is at least 1

256δ2
√

N .

• After k steps we are reduced to a progression of length at least 1
2562 δ4N1/2k

.

It therefore remain to show that if k = 128
δ , then N1/2k ≥ 216δ−4. Taking logs we see that this

inequality is equivalent to insisting that

log N ≥ [16 log 2 + 4 log δ−1]2128δ−1
.

It is then an easy exercise to see that

16 log 2 + 4 log δ−1 ≤ 24δ−1
,

and hence that in order to arrive at a contradiction (a non-empty Z-progression on which a subset
of A has density greater than one) it is sufficient to have

N ≥ exp exp(132 log 2 · δ−1). �


