
FAST FOURIER TRANSFORM

REU SUMMER 2005

Abstract. This note is taken from the lecture notes of Akos Magyar.

If N is a natural number, then let FN denote the Fourier transform of functions defined on ZN ,
that is:

(1) FNf(m) =
N−1∑
n=0

f(n)ω−nm
N

where ωN = e
2πi
N is the N -th root of unity.

If N is large an important practical problem arises which is to compute the Fourier transform using
as few elementary operations (such as multiplications and additions) as possible.

If M(N) denotes the minimum number of multiplications needed to compute FNf of any function
f : ZN → C, then a naive count tells us that M(N) ≤ N2. Our aim is to discuss the following

Theorem 1. (Cooley-Tukey 1965) Let N = 2k be a power of two. Then the Fourier transform
FNf of any function f : ZN → C can be computed by performing at most: M(N) ≤ N(log2 n − 1)
multiplications.

The algorithm behind the above theorem is the so-called Fast Fourier Transform (FFT), and has
turned out to be extremely useful in applications, such as in signal processing. It has been implicitly
used by many mathematicians, arguably even by Gauss in 1805!

It is based on the following

Lemma 2. One has M(2N) ≤ 2M(N) + 2N .

Proof. For f : {0, 1, . . . , 2N − 1} → C lets denote its restrictions to even and odd numbers by:
fe, fo : {0, 1, . . . , N − 1} → C where

fe(n) = f(2n) , fo(n) = f(2n + 1)

Also since ω2
2N = ωN one has by definition if 0 ≤ m < N :

(2) F2Nf(m) =
N−1∑
n=0

f(2n)ω−2nm
2N +

N−1∑
n=0

f(2n + 1)ω−(2n+1)m
2N =

N−1∑
n=0

fe(n)ω−nm
N + ω−m

2N

N−1∑
n=0

fo(n)ω−nm
N = FNfe(m) + ω−m

2N FNfo(m)

while for N ≤ m′ < 2N by writing m′ = N + m one gets exactly the same way (using ωN
2N = −1)

(3) F2Nf(m′) = FNfe(m)− ω−m
2N FNfo(m)

1



2 REU SUMMER 2005

Now to compute FNfe and FNfo, one needs 2M(N) multiplications and then 2N additional multi-
plications are needed to compute ω−m

2N and the products ω−m
2N FNfo(m). This proves the lemma. �

Proof of Theorem1. Let N = 2k and proceed by induction on k.

For k = 1 one has: F2f(0) = f(0) + f(1) and F2f(1) = f(0)− f(1) so M(2) = 0

For the induction step k → k + 1 one has by the above lemma:

M(2k+1) ≤ 2M(2k) + 2k+1

M(2k+1)
2k+1

≤ M(2k)
2K

+ 1 ≤ k − 1 + 1 = k

and this is what we wanted to show. �

Next we discuss a “cheap” way of multiplying polynomials of large degree and also large numbers
using the FFT.

Let p(x) =
∑P

n=0 anxn and q(x) =
∑Q

m=0 bmxm be polynomials of degrees P and Q. Then their
product r(x) = p(x)q(x) is of the form: r(x) =

∑R
k=0 ckx

k with R = P + Q and for 0 ≤ k ≤ R one
has

(4) ck =
∑

n

anbk−n where 0 ≤ n ≤ P and 0 ≤ k − n ≤ Q

Again a by naive count, to compute the coefficients ck one would first compute all the products
anbm using (P + 1)(Q + 1) multiplications. The idea is that formula (4) looks like the convolutions
of functions on ZN which is transformed into point-wise multiplication by the Fourier transform.

Let N be a power of 2 such that: P + Q < N ≤ 2(P + Q) and define the functions: f, g : ZN → C
by:

f(n) =
{

an if 0 ≤ n ≤ P
0 if P < n ≤ N − 1

and similarly

g(m) =
{

bm if 0 ≤ n ≤ Q
0 if Q < n ≤ N − 1

Then it is easy to check that

ck = f ∗ g(k) =
N−1∑
n=0

f(n)g(k − n)

Note that the difference k−n is computed in ZN that is (mod N), so if k < n then k−n := N−(n−k).
Using the fact that: f̂ ∗ g(m) = f̂(m)ĝ(m) one computes the convolution f ∗ g by applying the
FFT twice to get f̂ and ĝ, then using N multiplications one gets f̂ ∗ g and by one more application
of the FFT gives f ∗ g. Thus we have

Corollary 3. The product polynomial r(x) = p(x)q(x) can be computed by using no more than

(5) M ≤ 3N log2 N − 2N

multiplications, where N ≤ 2(P + Q).


