
THE CAUCHY-SCHWARZ INEQUALITY
AND SOME SIMPLE CONSEQUENCES

NEIL LYALL

Abstract. This note has been taken almost verbatim from existing notes of Alex Iosevich.

1. The Cauchy-Schwarz inequality

Let x and y be points in the Euclidean space Rn which we endow with the usual inner
product and norm, namely

(x, y) =
n∑

j=1

xjyj and ‖x‖ =

(
n∑

j=1

x2
j

)1/2

The Cauchy-Schwarz inequality:

(1) |(x, y)| ≤ ‖x‖‖y‖.

Here is one possible proof of this fundamental inequality.

Proof. We start with the seemingly innocent observation that if a, b ∈ R, then (a− b)2 ≥ 0
and hence

(2) ab ≤ a2 + b2

2
.

Using inequality (2) we see that

n∑
j=1

xjyj = ‖x‖‖y‖
n∑

j=1

xj

‖x‖
yj

‖y‖
≤ ‖x‖‖y‖

2

n∑
j=1

(
x2

j

‖x‖2
+

y2
j

‖y‖2

)
= ‖x‖‖y‖. �

• Let 1 < p < ∞ and define the exponent p′ by the equation 1
p

+ 1
p′ = 1. Can you

adapt the argument above to show that

|(x, y)| ≤

(
n∑

j=1

|xj|p
)1/p( n∑

j=1

|yj|p
′

)1/p′

.

Hint: Prove that ab ≤ ap

p
+ bp′

p′ and use this in place of (2) in the argument above.

• Can you extend (1) above and establish the Cauchy-Schwarz inequality on Cn en-
dowed with the usual Hermitian inner product (z, w) =

∑n
j=1 zjwj ?

1



2 NEIL LYALL

2. Projections

2.1. Two dimensional case. Let BN denote any collection of N points in R2. In this
situation we define the following projections; for x = (x1, x2) ∈ R2 we let

π1(x) = x2 and π2(x) = x1.

We will now prove by a simple geometric argument that one off the two projection of BN ,
that is π1(BN) or π2(BN), must contain at least

√
N points.

Define χA = 1 if x ∈ A and 0 otherwise.

• Verify that χBN
(x) ≤ χπ1(BN )(x2)χπ2(BN )(x1).

Using this fact it immediately follows that∑
x∈R2

χBN
(x) ≤

∑
x1,x2∈R

χπ1(BN )(x2)χπ2(BN )(x1) =
∑
x2∈R

χπ1(BN )(x2)
∑
x1∈R

χπ2(BN )(x1),

and hence

N = |BN | ≤ |π1(BN)| · |π2(BN)| ≤ [max
j=1,2

|πj(BN)|]2,

as claimed. This argument is essentially just the following. Suppose that |π1(BN)| <
√

N ,

by definition this means that BN contains less than
√

N columns. However, since |BN | = N

we know that one of these columns must contain more than N/
√

N points. We conclude

therefore that either |π1(BN)| ≥
√

N or |π2(BN)| ≥
√

N .

2.2. Three dimensional case. This case is not quite so easy, however the Cauchy-Schwarz
inequality will come to our rescue. We now let BN denote any collection of N points in R3

and define the following three projections; for x = (x1, x2, x3) ∈ R3 we let

π1(x) = (x2, x3), π2(x) = (x1, x3) and π3(x) = (x1, x2).

Claim: maxj=1,2,3 |πj(BN)| ≥ N2/3.

We shall in fact establish that

(3) |BN | =
√
|π1(BN)|

√
|π2(BN)|

√
|π3(BN)|,

from which the claim clearly follows.

• Verify that in this case χBN
(x) ≤ χπ1(BN )(x2, x3)χπ2(BN )(x1, x3)χπ3(BN )(x1, x2).
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Using this fact and the Cauchy-Schwarz inequality we see that∑
x∈R3

χBN
(x) ≤

∑
x1,x2,x3∈R

χπ1(BN )(x2, x3)χπ2(BN )(x1, x3)χπ3(BN )(x1, x2)

=
∑

x1,x2∈R

χπ3(BN )(x1, x2)
∑
x3∈R

χπ1(BN )(x2, x3)χπ2(BN )(x1, x3)

≤

( ∑
x1,x2∈R

χ2
π3(BN )(x1, x2)

)1/2
 ∑

x1,x2∈R

(∑
x3∈R

χπ1(BN )(x2, x3)χπ2(BN )(x1, x3)

)2
1/2

.

Now it is easy to see that the first sum above, namely∑
x1,x2∈R

χ2
π3(BN )(x1, x2) = |π3(BN)|,

while the second sum is simply∑
x1,x2∈R

(∑
x3∈R

χπ1(BN )(x2, x3)χπ2(BN )(x1, x3)

)2

=
∑

x1,x2∈R

∑
x3∈R

∑
x′
3∈R

χπ1(BN )(x2, x3)χπ2(BN )(x1, x3)χπ1(BN )(x2, x
′
3)χπ2(BN )(x1, x

′
3)

≤
∑

x1,x2∈R

∑
x3∈R

∑
x′
3∈R

χπ1(BN )(x2, x3)χπ2(BN )(x1, x
′
3)

= |π1(BN)| · |π2(|BN)|,

this establishes (3).

• Let Ω be a convex set in R3, show that

max
j=1,2,3

|πj(Ω)| ≥ |Ω|2/3.

Can you prove the stronger statement that |Ω| ≤ |π1(Ω)|1/2 · |π2(Ω)|1/2 · |π3(Ω)|1/2?

• Can you generalize (3)? By which I mean replace three dimensions with n and pro-
jections onto coordinate planes by projections onto k-dimensional coordinate planes,
with 1 ≤ k ≤ n − 1. Formulate what the correct generalization is and then try to
prove it.

3. Incidences

Consider the set of N lines and N points in the plane. Define an incidence to be a pair (p, `),
where p is one of our points, ` is one of our lines, and the point p lies on `. Let I(N) denote
the total number of incidences determined by a given set of N points and a given set of N
lines. To make our lives a little easier let us further assume that every one of our points lies
on at least one of our lines and every one of our lines contains at least one of our points.
How large can I(N) be?
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Szemerédi-Trotter Incidence Theorem.

I(N) ≤ CN4/3.

This result is sharp in the sense that one can construct a set of N points and N lines such
that the number of incidences is approximately N4/3, up to a constant.

We will not prove this result here, however using the Cauchy-Schwarz inequality and matrices
we will establish the weaker upper bound

(4) I(N) ≤
√

2N3/2.

We define a matrix A as follows. Enumerate our N points and our N lines. Let aij = 1 is
the ith point is on the jth line, and 0 otherwise.

• Observe that if j and j′ are fixed, with j 6= j′, then

aij · aij′ = 1

for at most one value of i.

It follows from the Cauchy-Schwarz inequality that

I(N) =
N∑

i=1

N∑
j=1

aij =
N∑

i=1

(
N∑

j=1

aij

)
· 1 ≤

√
N

 N∑
i=1

(
N∑

j=1

aij

)2
1/2

.

However
N∑

i=1

(
N∑

j=1

aij

)2

=
N∑

i=1

N∑
j=1

N∑
j′=1

aijaij′ =
∑

i

∑
j

∑
j′ 6=j

aijaij′ +
N∑

i=1

N∑
j=1

a2
ij ≤ N2−N +N2 ≤ 2N2,

from which it (4) follows.

• Show that the estimate I(N) ≤ CN3/2 we just obtained for points and lines in the
plane is actually best possible for points and lines in Z2

p.

• Let DN denote the number of distinct distances between a given set of N points in
the plane. Use (4) to show that |DN | ≥ C

√
N . It is conjectured that |DN | ≥ C N

log N
.

• If we now let DN denote the number of distinct distances between a given set of N
points in Rn. Show that in this case |DN | ≥ CN1/n. It is conjectured that when
n ≥ 3 that |DN | ≥ CN2/d.

• Prove that N points and N spheres of the same radius in Rn, n ≥ 4, can have
N2 incidences. Use what we have learned to show that when n = 2 the number of
incidences is ≤ CN3/2. What can you say about the case where n = 3.


