
BERTRAND’S POSTULATE

NEIL LYALL

Bertrand’s Postulate. For every n > 1, there is a prime number p such that n < p < 2n.

Our proof will be by contradiction. We will assume that there are no primes between n and
2n and conclude that the binomial coefficient

(
2n
n

)
is then smaller than should be.

1. Preliminaries

The following observations are the key to our argument.

Theorem 1. Let n ≥ 2 be an integer, then∏
p≤n

p < 4n,

where the product on the left has one factor for each prime p ≤ n.

Theorem 2. Legendre’s Theorem. The number n! contains the prime factor p exactly∑
k≥1

⌊
n

pk

⌋
times. Here bxc denotes the floor function of x.

Proof. Exactly bn/pc of the factors of n! are divisible by p, while exactly bn/p2c of the factors
of n! are divisible by p2,. . . �

Corollary 3. The binomial coefficient
(
2n
n

)
contains the the prime factor p exactly

sp =
∑
k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
≤ max{r : pr ≤ 2n}

times.

As a consequence of the identity in Corollary 3 we obtain the following key facts.

Key Facts. If sp is the largest power of p that divides
(
2n
n

)
, then

(i) psp ≤ 2n
(ii) If

√
2n < p, then sp ≤ 1

(iii) If 2n/3 < p ≤ n, then sp = 0.
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2. Proof of Bertrand’s Postulate

We start by assuming that there are no primes p with n < p < 2n. It follows from the key
facts and Theorem 1 that(

2n

n

)
=

∏
p≤2n/3

psp ≤
∏

p≤
√

2n

psp ·
∏

p≤2n/3

p < (2n)
√

2n/2−142n/3.

If we now use the fact that

2n

(
2n

n

)
≥

n∑
k=0

(
2n

k

)
= 4n,

we can conclude that
42n/3 < (2n)

√
2n.

Taking logs of both sides and substituting n = 22k+1, for some integer k, we see that this
necessarily implies

2k <
3

2
(k + 1),

which is clearly false whenever k ≥ 3. This proves Bertrand’s postulate for n ≥ 27 = 128.

For the cases where n < 128 it suffices to check that

2, 3, 5, 7, 13, 23, 43, 83, 163

is a sequence of primes, where each is smaller than twice the previous one.

3. Proof of Theorem 1

The proof is by induction over n. For n = 2 we have 2 < 42, which is certainly true. This
provides a basis for the induction. Let us now assume that the statement has be proven for
all integers small than n. We may assume that n is odd [why?], say n = 2k + 1. Now since∏

k+1<p≤n p is a divisor of
(

n
k+1

)
, we obtain∏

p≤n

p =
∏

p≤k+1

p ·
∏

k+1<p≤n

p < 4k+1

(
n

k + 1

)
< 4k+12n−1 = 4n,

as required. Here we used the inductive hypothesis and the fact that

2

(
2k + 1

k + 1

)
=

(
2k + 1

k

)
+

(
2k + 1

k + 1

)
≤

2k+1∑
j=0

(
2k + 1

j

)
= 22k+1.

4. Exercises

1. Carefully verify Theorem 2 and how each of the key facts follow from it.
2. Fill in any details which are missing in the two proofs above, the presentation was

admittedly a little brief.


