BEHREND'S EXAMPLE

NEIL LYALL

Behrend's Theorem ${ }^{1}$. Let N be a large integer, then there exists a subset $A \subset[1, N]$ with $|A|=N \exp (-c \sqrt{\log N})$ which does not contain any arithmetic progressions of length three.

Proof. The proof relies on the geometrical observation that a straight line can intersect a sphere in \mathbb{Z}^{n} in at most two points. In other words the set

$$
\left\{x \in \mathbb{Z}^{n}:|x|=r\right\}
$$

cannot contain an arithmetic progression of length three, for any $r>0$ and $n \geq 1$.
Now we have to map this example back to $\{1, \ldots, N\}$. Let n, M be large integers which we shall determine later, and consider the set

$$
S(r)=\left\{x \in\{1, \ldots, M\}^{n}: x_{1}^{2}+\cdots+x_{n}^{2}=r^{2}\right\} .
$$

Note that as r^{2} ranges from n to $n M^{2}$ these sets cover the cube $\{1, \ldots, M\}^{n}$, which is of cardinality M^{n}. It therefore follows from the 'principle of the pigeons' that there exist a radius $\sqrt{n} \leq R \leq \sqrt{n} M$ such that the sphere $S:=S(R)$ in $\{1, \ldots, M\}^{n}$ has cardinality

$$
|S| \geq M^{n} / n\left(M^{2}-1\right)>M^{n-2} / n
$$

Now we must map S to $\{1, \ldots, N\}$. To this end we define the mapping

$$
P(x)=P\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2 M} \sum_{k=1}^{n} x_{k}(2 M)^{k} .
$$

It is then easy to check that
(i) P is a one-one mapping
(ii) $x+y=2 z$ whenever $P(x)+P(y)=2 P(z)$
(iii) $\max _{x \in S} P(x) \leq(2 M)^{n}$.

Therefore, if we set $M=\left\lfloor N^{1 / n} / 2\right\rfloor$ it follows that $P(S) \subset\{1, \ldots, N\}$ and contains no arithmetic progressions of length three. Setting $n=\sqrt{\log N}$ we see that $P(S)$ has cardinality

$$
|P(S)|=|S| \geq \frac{N^{1-2 / n}}{n 2^{n}} \geq N \exp \left(-\log n-n \log 2-\frac{2}{n} \log N\right)=N \exp (-C \sqrt{\log N})
$$

[^0]Here Bourgain's result corresponds to the upper bound of $\exp \left(c_{2} / \delta^{2+\epsilon}\right)$ for $R(\delta)$.

[^0]: ${ }^{1}$ If we let $r(N)$ denote the maximal cardinality of a subset $A \subset[1, N]$ which does not contain any arithmetic progressions of length three, then combining Behrend's theorem with the bounds obtained by Roth, we see that

 $$
 N \exp (-c \sqrt{\log N}) \leq r(N) \leq C N / \log \log N
 $$

 The best know upper bound of $c_{1} N \sqrt{\log \log N / \log N}$ for $r(N)$ is due to Bourgain.
 Alternatively, if for a given $0<\delta<1$ we define $R(\delta)$ to be the smallest number R such that if $N \geq R$ then any $A \subset[1, N]$ with $|A|=\delta N$ contains an arithmetic progression of length three, then the corresponding inequality is

 $$
 \exp (1 / c \cdot \log 1 / \delta)^{2} \leq R(\delta) \leq \exp \exp (C / \delta)
 $$

