DISTANCES IN DENSE SUBSETS OF Z¢

NEIL LYALL AKOS MAGYAR

ABSTRACT. In [2] Katznelson and Weiss establish that all sufficiently large distances can always be attained
between pairs of points from any given measurable subset of R? of positive upper (Banach) density. A
second proof of this result, as well as a stronger “pinned variant”, was given by Bourgain in [1] using Fourier
analytic methods. In [5] the second author adapted Bourgain’s Fourier analytic approach to established a
result analogous to that of Katznelson and Weiss for subsets Z¢ provided d > 5. In this article we establish
an optimal strengthening of this discrete distance set result as well as the natural “pinned variant”.

1. INTRODUCTION

Recall that upper Banach density 6* is defined for A C Z% by

d
5*(A) = lim sup AN @@+ {1, N}
N—)OOJ;Ezd Nd

1.1. Distance sets and existing results. A result of Katznelson and Weiss [2] states that all sufficiently
large distances can always be attained between pairs of points from any given measurable subset of R? of
positive upper (Banach) density. Specifically, if A is a measurable subset of R? of positive upper (Banach)
density, then there exists A\g = Ag(A) such that the distance set

dist(A) ={|lz —y| : =,y € A} D [Ao,0).

This result was later established using Fourier analytic methods by Bourgain in [1]. Bourgain in fact also
established a “pinned variant”, namely that for any A; > Ag there is a fixed z € A such that

dist(A;z) = {|lz —y| : vy € A} 2 [Xo, M1]-
In [5] the second author adapted Bourgain’s Fourier analytic approach to established a result analogous

to that of Katznelson and Weiss for subsets Z?, namely that if A C Z¢ of positive upper (Banach) density
and d > 5, then there exists \g = A\g(A4) and an integer ¢, depending only on the density of A, such that

dist?(A) = {|z — y|? : 2,y € A} D [Ao, 00) N ¢Z.

Note that the fact that A could fall entirely into a fixed congruence class of some integer 1 < r < §*(A)~1/4
ensures that ¢ must be divisible by the least common multiple of all integers 1 < r < §*(A)~/4.

1.2. New results. In what follows we will denote the discrete sphere of radius v/A by Sy, namely
Sy:={zeR?: 2> =2} NnZ%
Our first result is the following optimal strengthening of the discrete distance set result from [5].
Theorem 1 (Optimal Unpinned Distances). Let ¢ >0 and A C Z¢ with d > 5.

There exist ¢ = q(g) and Ag = Ao(A4, €) such that for any X > Ao there exist x € A for which

[AN (z+ ¢Sy

(1) N > 6*(A) —e.

While the main result of this paper is the following (optimal) “pinned variant” of Theorem 1 above, in
other words the (optimal) discrete analogue of Bourgain’s pinned distances theorem.
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Theorem 2 (Optimal Pinned Distances). Let e >0 and A C Z¢ with d > 5.

There exist ¢ = q(€) and N\g = Ao(A4,¢€) such that for any given Ay > X\ there exists a fixred x € A such
that

(2) >0"(A) —e forall N <A< A

2. UNIFORMLY DISTRIBUTED SETS

Definition 1 (Definition of g, and n-uniform distribution). For any n > 0 we define
(3) ¢y :=lem{l < g < Cn~?}
with C > 0 a (sufficiently) large absolute constant and A C Z¢ to be n-uniformly distributed (modulo g, ) if
its relative upper Banach density on any “residue class” modulo g, never exceeds (1 + n?) times its density
on Z%, namely if

3 (Als + (ay2)") < (L+07) 5" (A)
holds for all s € {1,...,q,}%

Theorems 1 and 2 are immediate consequences, via an easy density increment argument, of the following
analogous results for uniformly distributed sets.

Theorem 3 (Theorem 1 for Uniformly Distributed Sets). Let € >0, 0 < n < €2, and A C Z% with d > 5.
If A is n-uniformly distributed, then there exist \g = Ao(A, €) such that for any A > A\ one has
AN (z+ S))]
(4) — T
|95l
Theorem 4 (Theorem 2 for Uniformly Distributed Sets). Let e >0, 0 < < €, and A C Z* with d > 5.

If A is n-uniformly distributed, then there exist A\g = Ao(A, €) such that for any given Ay > Ao there exists
a fired x € A such that

()

> 0"(A) —¢e  for somex € A

|f1r1($'+'SA)

>0"(A) —e  forall N <A< A
Y

3. PRELIMINARIES

3.1. Fourier analysis on Z¢. If f : Z? — C is a function for which
D @) <oo
z€Z2

we will say that f € ¢}(Z%) and define

Il =D 1f @)l

T€Z
For f € ¢! we define its Fourier transform f: T¢ — C by
F&O) =" fla)e?mins
YA

noting that the summability assumption on f ensures that the series defining j? converges uniformly to a
continuous function on the torus T?, which we will freely identify with the unit cube [0,1)¢ in R9.

Furthermore, Parseval’s identity, namely that if f, g € ¢! then

()= 3 1)@ = [ Fleraeiae

Py

is a simply and immediate consequence of the familiar orthogonality relation

/e%”‘fdfz 1 %f:c:O
T 0 if z#0
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Defining the convolution of f and g to be

Frgle)=> flz—y)g

y€eZd

it follows that if f,g € ¢* then f x g € ¢! with
If*glly <lIfllllgli  and  Fxg=Fg.

Finally, we recall following consequence of the Poisson Summation Formula, namely that if v is a Schwartz
function on R¢, then

(6) B(E) =Y v(E—y)

y€ezd

denotes the Fourier transform on R? of 1.

3.2. Counting differences in Sy. Let A C By, where By C Z¢ denotes some arbitrary translate of the
cube {1,..., N}¢ and recall that we are denoting the discrete sphere of radius VX by Sy, namely

Ni={z eRY: 22 = A} Nz
It is easy to verify, using the properties of the Fourier transform discussed above, that

®) SRS ) = [IT@ra©

z€A |S>“

where Ay (f)(z) denotes the spherical average

(9) AN(f)(@) = f xox(w |S DI

yESK

3.3. Exponential sum estimates. In light of (8) we will naturally be interested estimates for the Fourier
transform of the surface measure oy, namely

(10)

_o 5
|SA| Z Tiz

€SN

It is clear that whenever |£|? < A~! there can be no cancellation in the exponential sum (10), in fact it is
easy to verify that the same is also true whenever £ is close to a rational point with small denominator. The
following Proposition is a precise formulation of the fact that this is the only obstruction to cancellation.

Proposition 1 (Key exponential sum estimates, Proposition 1 in [5]). Let n > 0. If A > Cn~* and
_ d I
€ (0,'2)" +{€ e R« ¢ <n~'A71},

then

1 —2mix-§
‘@ Z e <n

TESH
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3.4. Smooth cutoff functions. It will be convenient to introduce a smooth function 14,7 whose Fourier
transform (on Z?) will serve as a substitute for the characteristic function of the set

— d —
Mo =(¢'2)" +{¢eR: ¢ < L7}
Towards this end, let ¢ : RY — (0,00) be a Schwartz function satisfying

1=9(0)>9(§) >0 and  $(§) =0 for [¢>1
where 1 denotes the Fourier transform (on R?) of ¢. For a given ¢ € N and L > ¢ we define

q d x . _
(11) Yo.r(x) = {(L) v (f) i @=(dZ)7)

0 otherwise

It follows from the Poisson summation formula that the Fourier transform (on Z%) of 1, 1, takes the form

(12) =37 <L <5 - §)>

tezd
and is supported on My 1.

3.5. Properties of v, ; and QZ,LL. We first note that since 1; is compactly supported and ¢ < L, it follows
from (12) that

> () = 1e0(0) = Y $(CL/q) = ¥(0) = 1.

TEZ Lezd

We next make the simple but important observation that ¢ may be chosen so that for any n > 0, the
function 1 — 1) 1 will be essentially supported on the complement of 9, , -1 in the sense that

(13) 1= dor(©)] <7
whenever § € M, ;11

Finally we record a precise formulation of the fact that 1, 1, is essentially supported on a box of size n~'L
and is approximately constant on smaller scales.

Lemma 1. Letn >0 and 1 < q < L, then

(14) > Ygrlz) <.

|z|>n—1L
and
(15) [Xq,L * Yq,L, — Ya,Lillt <

whenever Ly > n~ 'L, where

_J® i re@@in-4 49
(16) XaL(7) = { OL otherwise T

Proof. Estimate (14) is easily verified using the fact that ¢ is a Schwartz function on R? as

S =0 Y wwm< ()Y ()T <y

|z|>n—1L vezd Lezd

To verify estimate (15) we make use of the fact that both ¢ and its derivative are rapidly decreasing,
specifically

IXq.L * Vg,z, — VgL, 1 < (%)d (qu)d Z Z ‘w(xL—ly) _w(%)’

w€(qZ)? ye(qz)in[- L&, )4

d —d—1
L (q || L
< — | = g 1+ = < —. O
(L1> ( +L1> T Ly

ze(qzZ)?

|
Ly
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4. REDUCING THEOREMS 3 AND 4 TO KEY DicHOTOMY PROPOSITIONS

First a definition.

Definition 2 (Definition of (1, L)-uniform distribution). Let N be a large positive integer and By C Z?
denotes some arbitrary translate of the cube {1,..., N}¢. For any n > 0 and positive integer L with the
property that g,|L|N we define A C By to be (1, L)-uniformly distributed if

ANBLN(s+ (g,2)° A

ANBLO G+ @ _ () | oAl

(L/qn) N

holds for all s € {1,...,¢,}? and each sub-cube By, in the partition of the original cube By into (N/L)%
sub-cubes each of “sidelength” L.

4.1. Dichotomy Propositions. As with the second author’s approach in [5], itself adapted from [1], we
will deduce Theorems 3 and 4 as consequences of the following quantitative finite versions.

Proposition 2 (Dichotomy for Theorem 3). Let e > 0, 0 < n < €2, and (L, N) be a pair of integers such
that q,|LIN. If A C By C Z% with d > 5 is (n, L)-uniformly distributed, then for all integers \ satisfying
n~4L% < X < n''N? one of the following statements must hold:

(i) there exists x € A such that
[AN(z+ Sy @—5
|19x| Nd
(i)
TG
T A
1Al Ja,
where Qx = Qx(n, q,) denotes the set theoretic sum (q;lZ)d +{€eR: PP A <2 < 2AL)

Proposition 3 (Dichotomy for Theorem 4). Lete >0, 0 <n < &3, and A C By C 7% with d > 5.

If A is (n, L)-uniformly distributed (this implicitly assumes that q,|L|N ), then for all integer pairs (Ao, A1)
that satisfy n~4L% < Ao < A\ < "' N? one of the following statements must hold:

(i) there exists x € A with the property that one has

AN (z+ Sy _ |A]

EN mfs for all Xg < A< )\
A

(i)
1

i Ta(€)]? dE > &2

Qr0.01

d _ _
where Qxg x, = g (1, 4y) = (q;lZ) +{Ee R P2 AT <2 <2t

4.2. The Proof of Theorems 3 and 4. We naturally start with a short Lemma relating our two notions
of uniform distribution.

Lemma 2. If A C Z% is n-uniformly distributed. Then there exists a constant L(A,n) such that for every
positive integer L > L(A,n) satisfying qy|L the following holds: There exist arbitrarily large positive integers
N satisfying L|N such that
ANB
(i) |N7dN| >0"(A)—¢/2 and (ii) AN By is (2n, L)-uniformly distributed
hold simultaneously for some cube By .

Proof. By our assumption there exists a positive integer L(A,n) such that if L’

s d /
Sl + (ay2)") 1 Brr) o= R

for any s € {1,...,¢,}? and any cube By of size L'. Let L > L’ such that g,|L.

L(A,n), then

< (1+219%) 6% (A)
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Now choose any cube By of size N’ > ¢~ 1n~2L such that 6(A|By/) > 6*(A)(1 — en?/20). Choosing
N’ < N < N'+ L one can ensure L|N and §(A|By) > §*(A)(1 —en?/10), thus (i) holds (easily). To see (ii)
note that |(s + (¢,Z)¥) N Br| = (L/gq,)* and for A’ := AN By and any cube By, C By of size L we have
AT 2y 14|
Nd Nd*

[A"N (5 + (942)") N Bi|

(L/q,)? < (1+39%/2)6"(A) < (1 +29*)(1 —en?/10)~*

<(1+4n*)

4.2.1. Proof that Proposition 2 implies Theorem 3. Let ¢ > 0 and 0 < n < €2. Suppose that A C Z¢ with
d > 5 is an p-uniformly distributed set for which the conclusion of Theorem 3 fails to hold, namely that
there exists arbitrarily large integers A for which

Y

for all € A. For a fixed integer J > e~! we choose a sequence {\ 3)} —; of such A’s with the property that
AD > p=4r2 A0 < pANGHD for 1 < j < J, and V) < ' N? with L and N satisfying the conclusion of
Lemma 2. From Lemma 2 we obtain a set A N By, which we will abuse notation and denote by A.

An application Proposition 2 thus allows us to conclude that for this set one must have

(17) |/ 1T4(6)2de > Je > 1.

2,

On the other hand it follows from the disjointness property of the sets €1y, which we guaranteed by our
initial choice of sequence {\U )}, and Plancherel that

18) ] /

giving a contradiction. |

TR < o [ TR =1

A(J)

4.2.2. Proof that Proposition 3 implies Theorem 4. Let ¢ > 0 and 0 < n < £3. Suppose that A C Z¢ with
d > 5 is an p-uniformly distributed set for which the conclusion of Theorem 4 fails to hold, namely that
there exists arbitrarily large integer pairs (Ag, A1) such that for all x € A

AN S
| (JC+ )\)|S5*(A)—€
|9Al
for some Ay < X < Aq.
For a fixed integer J > 72 we choose a sequence of such pairs { (Agj ), )\gj ) 3-]:1 with the property that

)\(()1) >ntL2, /\éj) < 774/\§j+1) for 1 < j < J, and /\gJ) < n''N? with L and N satisfying the conclusion of
Lemma 2. From Lemma 2 we obtain a set A N By, which we will abuse notation and denote by A.

An application Proposition 3 thus allows us to conclude that for this set one must have

J
1 —~
(19) 3 I/ ()2 de > Je2 > 1.
j= | NEING))

On the other hand it follows from the disjointness property of the sets Q)\m \(, which we guaranteed by
0 71

our initial choice of pair sequence {()\((]J ), )\(J ))}, and Plancherel that

‘1
(20) S TR < o [ TP =1
j=1 Al Jo () () ‘A|
>\0 ,%1

giving a contradiction. ]
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5. PROOF OF PROPOSITION 2

Let f =14 and § = |A|/N9. Suppose that n~4L? < A\ < n''N? and that (i) does not hold, then

(21) (L AN() < (f,6 =) = (0 —¢)|A].
We now define

(22) fi=1[xq, L, and fo=[fxiq, L,
with Ly = n~/2X\"/2 and L, = n \'/2. Since

(23) [0a,,2(€) = g2, ()| < /2

whenever ¢ € = Mg, 1, \ M, -1/21,, the proof of Proposition 2 is therefore reduced (via Parseval) to
showing that if (21) holds, then

(24) [(fs Ax(f2 = f1))| > €Al
The observation that
(s ANz = F)| = [CF ANCEON | = (s ANCE)) = [ AN = f2))]

further reduces the entire argument to
Lemma 3 (Main term). If fi := f =ty 1, with L1 =n~Y2XY2 then |(f, Ax(f1))| > (6 — Cn'/?)|Al.
Lemma 4 (Error term). If fo 1= f % g, 1, with Ly =nAY2, then [(f, A\(f — f2))] < n'/?|A].

Proof of Lemma 3. Since A is (n, L)-uniformly distributed it follows that f * x4..(z) < 6(1 + n?) for all
z € Z%

As L >~ %2L and n'/? <« § it further follows from the properties of g1, discussed in Section 3.5 that
fi(@) = [ xtgr,(2) < f*Xq,L * VgL, (2) + | * (gL, — Xq,L * g,L,)(@)]
<S(140?) +Cn/? < 5(1+ Cn?).

Let N’ = N + 7~ 52L; and let By’ be a cube of size N’ centered at the same point as By. As f is
supported on By and n'/? < § we have

(25) Yo A=Y A - D fl) - D Al) =601 -Cn)Byl.
r€BN €Lk ¢ By z€BN/\Bn

Indeed, since N > n~5L; we have

|BN’\BN| N’ —5/2 Ly 5/2
1IN ANV 1 -
|Bn| < N < N <

while from (14) we have
S A@< Y ) Y fe—y) < OBl
$¢BN/ ‘y‘>>77*5/2L1 x
We now define the set
E:={x € Bn; fi(z) <d—Cn}.
From estimate (25) it follows that
S1=Cr)ByI <Y filw)+ Y. file) <|EI(6—Cn)+ (IBx| = [EDO+Cn?)
zeE z€BN\E
and hence that |E| < Cnd|Byx| = Cn|A|. Using the bound
fi(z) 26— Cn—1p(x)
for x € By it follows that
(L AN(f1)) = (f, 0 = Cn) = [{f, Ax(1E))| = (6 — Cn)|A] = [(f, Ax(1p))]-
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The result follows via an application of Cauchy-Schwarz and the ¢? boundedness of the operator Ay,
namely that

Yo M@ <O lg(@)f

z€Z? z€Z?
for any g € L?, which is an immediate consequence of Plancherel and the fact that |ox(¢)| < 1 for all ¢ € T9.
Indeed, with ¢ = 1g, we thus obtain

1/2 1/2
[(f, Ax(LE))| < ( > f(:v)2> < > 1E(w)> <|AVRIEM? < ' 2|A. O

rEBN z€EBN

Proof of Lemma 4. Note that
(A = 1)1 < [ IFOPL = B2 0] 1550 e,

Now Proposition 1 ensures that
ox(©) <n
for all € ¢ M, n-1/21, and ¢ was constructed so that
(26) 1= g1, ()] < 02
whenever £ € 9, . —1/2;,. The result follows via Plancherel as [ox ()| < 1 for all § € Te. O

6. PROOF OF PROPOSITION 3

Suppose that we have a pair (Ao, A1) satisfying n74L? < \g < A\; < n'' N2, but for which (i) does not
hold. It follows that there must exist Ay < A < Ay such that

(f,AN()) < (0 —¢)|A]
and hence that
(27) (fLAQ = f)) = (1 =0 +¢/2)[4]

where 1 = 1p, and for any function g : Z¢ — C, A.(g) denotes the discrete spherical mazimal function
defined by

A(g)(@) := sup [Ax(g)(z)|-

Ao <A<\

Proposition 4 (¢2-Boundedness of the Discrete Spherical Maximal Function [6]). If d > 5, then

Yo MA@ <C ) g

z€eZ4 T€Z4

In light of Proposition 4, the proof of Proposition 3 reduces (via Cauchy-Schwarz and Plancherel) to
showing that if (27) holds, then

(28) [(fs Ac(fa = f1))] > €l Al
with f1 = f %1, 1, and fo = f *1,, 1,, where now L; = n’1/2)\}/2 and Ly = nAé/2.
Since

[(Fy As(f2 = D] = 1, AL = D = (AL = f1)) = [{F5 Au(f = f2))

the whole argument reduces to
Lemma 5 (Main term). If fi := f %y, 1, with L, = 77*1/2)\1/2, then
[(F AL = f)l < (1= 0+ Cn'/?)|Al
Lemma 6 (Error term). If fo := f % ¢y, 1, with Ly = 77)\(1)/2, then |(f, A.(f — f2))| < Cn'/3|A|.
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6.1. Proof of Lemma 5. We use the lower bound

filx) > 6 —Cn—1g(z)
for z € By together with the bound |E| < Cnd|By| proved in Lemma 3. Then, as in the proof of Lemma
3, we obtain

[(f AL = ) < (1 =0+ C) Al + [(f, A-(1E))]-

The result follows via an application of Cauchy-Schwarz and Proposition 4 since

1/2 1/2
I(f; A(1E))] < <Z f(z ) (Z 1E(£)> <|A['?|BIM? < 0?4

zEBN rzEBN

6.2. Proof of Lemma 6. Note that
Af = fa) = sup |(f =g, x ) xox] = sup |[fx(on —0ox*ty, 1,)] = Acy(f)

Ao<A<A Ao <A<\

where the maximal operator A, , corresponds to the “mollified” multiplier 75 , := (1 — Zan, L,). Thus in
order to prove the Lemma 6 it is suffices establish the following proposition.

Proposition 5 (/?-Decay of the “Mollified” Discrete Spherical Maximal Function). Let f € €2, then for any
n > 0 we have

(29) ST AN@P <> | f(=

T€ZY T€Z4

Proof of Proposition 5. We follow the proof of Proposition 4 given in [6]. For each x € Z? we now define
(30) Arf(x) = Az f(2)
noting that A, f(x) = SUP 12 oy 3172 Anf(z) = A, f(z) and ./L,T,f(z) = A (f — fo) ().

We now recall the approximation to ./TA given in Section 3 of [6] as a convolution operator M acting on
functions on Z? of the form

(31) My = Cdi Z 6727ri/\a/qM§L\/q

=1 1<a<q
(a,q)=1

where for each reduced fraction a/q the corresponding convolution operator Mi/ ? has Fourier multiplier
(32) my/ () == > Gla/q, ey (€ — t/)r(§ — £/q)
Lezk

with ¢4(€) = ¢(¢€) a standard smooth cut-off function, G(a/g,!) a normalized Gauss sum, and 7 (§) = 7(XE)
where 7(¢) is the Fourier transform (on R?) of the measure on the unit sphere in R? induced by Lebesgue
measure and normalized to have total mass 1. By Proposition 4.1 in [6] we have

(33) [, s 1A = MA] ) < CAT Sl
provided d > 5. Writing M, (f) := SUP 172 oy 172 IMA(f)] and M., (f) := M. (f — f2), this implies

(34) [ Aen(f) = Men(Dllee = IS = f2) = Mulf = )2 < OIS = Rellee < OO f e
Thus by choosing Ao > 7~ matters reduce to showing (29) for the operator M, ,,.

For a given reduced fraction a/q define the maximal operator

(35) MUy i= sup MY,

A/ 2<agar/?
where M %/4 ig the convolution operator with multiplier mA/ 7(¢). Tt is proved in Lemma 3.1 of [6] that

(36) IMY ()l < Cq 2| flge-
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We will show here that if ¢ < Cp~2/3, then

(37) |ME(f = f2)llee < O P2 f e
Taking estimates (36) and (37) for granted, one obtains
38 MG Ple < (X Y ) e < 0 Bl
1<g<Cn=2/3 q>Cn—2/3

as required. It thus remains to prove (37).
Writing ¢, (€) = ¢y (§)¢,(§), with a suitable smooth cut-off function ¢, we can introduce the decomposi-
tion
39wy = (X Glafa ¢ ~ t/a) (Z pal€ ~ £/0)5 (&~ £/)) = "/ 1(€) n(©),
Lezk
since for each £ at most one term in each of the above sums is non-vanishing. Accordingly

(40) ME(f = f2) = GO N2(f ~ fo)
where the maximal operator V! and the convolution operator G, /q correspond to the multipliers n{ and
g%/4 respectively. Now by the standard Gauss sum estimate we have |g%/9(¢)| < ¢~%? uniformly in £, hence

(41) 1G9 NA(f = f)llee < ¢ P INE(f = fo) 2
Thus by our choice g, := lem{1 < ¢ < Cp~?} it remains to show that if ¢ divides g, then
(42) INECf = folller < 02| flez-
As before we may write N, (f) = N (f — f2), and note that this is a maximal operator with multiplier
(43) N (€)1 = g,.2.)(€) = Y 0al€ —£/a) (1~ Dy, 1) (€ ~ /0)FA(E — /a).
Lezd

For a fixed ¢, the multiplier ¢, (1 — 1quL2)E>\ is supported on the cube [_2L 2—] thus by Corollary 2.1 in [6]

IV llez sz < CINE 221

where the latter is the maximal operator corresponding to the multipliers ¢4(1 — qu L,)0x, for )\é/ 2<a<
)\i/2, acting on L?(R?). By the definition of the function 1, 1,

|1 - {[J\qT,,LQ (£)| < min{17 L2|§‘},
thus from Theorem 6.1 (with j = 1) in [3] we obtain

1/3
L
IV llz2sre < (Ajz) < n'/?
0

which establishes (42) and completes the proof. O
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