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Abstract. In [2] Katznelson and Weiss establish that all sufficiently large distances can always be attained
between pairs of points from any given measurable subset of R2 of positive upper (Banach) density. A

second proof of this result, as well as a stronger “pinned variant”, was given by Bourgain in [1] using Fourier

analytic methods. In [5] the second author adapted Bourgain’s Fourier analytic approach to established a
result analogous to that of Katznelson and Weiss for subsets Zd provided d ≥ 5. In this article we establish

an optimal strengthening of this discrete distance set result as well as the natural “pinned variant”.

1. Introduction

Recall that upper Banach density δ∗ is defined for A ⊆ Zd by

δ∗(A) = lim
N→∞

sup
x∈Zd

|A ∩ (x+ {1, . . . , N}d)|
Nd

.

1.1. Distance sets and existing results. A result of Katznelson and Weiss [2] states that all sufficiently
large distances can always be attained between pairs of points from any given measurable subset of R2 of
positive upper (Banach) density. Specifically, if A is a measurable subset of R2 of positive upper (Banach)
density, then there exists λ0 = λ0(A) such that the distance set

dist(A) = {|x− y| : x, y ∈ A} ⊇ [λ0,∞).

This result was later established using Fourier analytic methods by Bourgain in [1]. Bourgain in fact also
established a “pinned variant”, namely that for any λ1 ≥ λ0 there is a fixed x ∈ A such that

dist(A;x) = {|x− y| : y ∈ A} ⊇ [λ0, λ1].

In [5] the second author adapted Bourgain’s Fourier analytic approach to established a result analogous
to that of Katznelson and Weiss for subsets Zd, namely that if A ⊆ Zd of positive upper (Banach) density
and d ≥ 5, then there exists λ0 = λ0(A) and an integer q, depending only on the density of A, such that

dist2(A) = {|x− y|2 : x, y ∈ A} ⊇ [λ0,∞) ∩ qZ.

Note that the fact that A could fall entirely into a fixed congruence class of some integer 1 ≤ r ≤ δ∗(A)−1/d

ensures that q must be divisible by the least common multiple of all integers 1 ≤ r ≤ δ∗(A)−1/d.

1.2. New results. In what follows we will denote the discrete sphere of radius
√
λ by Sλ, namely

Sλ := {x ∈ Rd : |x|2 = λ} ∩ Zd.

Our first result is the following optimal strengthening of the discrete distance set result from [5].

Theorem 1 (Optimal Unpinned Distances). Let ε > 0 and A ⊆ Zd with d ≥ 5.

There exist q = q(ε) and λ0 = λ0(A, ε) such that for any λ ≥ λ0 there exist x ∈ A for which

(1)
|A ∩ (x+ qSλ)|

|Sλ|
> δ∗(A)− ε.

While the main result of this paper is the following (optimal) “pinned variant” of Theorem 1 above, in
other words the (optimal) discrete analogue of Bourgain’s pinned distances theorem.
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Theorem 2 (Optimal Pinned Distances). Let ε > 0 and A ⊆ Zd with d ≥ 5.

There exist q = q(ε) and λ0 = λ0(A, ε) such that for any given λ1 ≥ λ0 there exists a fixed x ∈ A such
that

(2)
|A ∩ (x+ qSλ)|

|Sλ|
> δ∗(A)− ε for all λ0 ≤ λ ≤ λ1.

2. Uniformly Distributed Sets

Definition 1 (Definition of qη and η-uniform distribution). For any η > 0 we define

(3) qη := lcm{1 ≤ q ≤ Cη−2}
with C > 0 a (sufficiently) large absolute constant and A ⊆ Zd to be η-uniformly distributed (modulo qη) if
its relative upper Banach density on any “residue class” modulo qη never exceeds (1 + η2) times its density
on Zd, namely if

δ∗(A | s+ (qηZ)d) ≤ (1 + η2) δ∗(A)

holds for all s ∈ {1, . . . , qη}d.

Theorems 1 and 2 are immediate consequences, via an easy density increment argument, of the following
analogous results for uniformly distributed sets.

Theorem 3 (Theorem 1 for Uniformly Distributed Sets). Let ε > 0, 0 < η � ε2, and A ⊆ Zd with d ≥ 5.

If A is η-uniformly distributed, then there exist λ0 = λ0(A, ε) such that for any λ ≥ λ0 one has

(4)
|A ∩ (x+ Sλ)|

|Sλ|
> δ∗(A)− ε for some x ∈ A

Theorem 4 (Theorem 2 for Uniformly Distributed Sets). Let ε > 0, 0 < η � ε3, and A ⊆ Zd with d ≥ 5.

If A is η-uniformly distributed, then there exist λ0 = λ0(A, ε) such that for any given λ1 ≥ λ0 there exists
a fixed x ∈ A such that

(5)
|A ∩ (x+ Sλ)|

|Sλ|
> δ∗(A)− ε for all λ0 ≤ λ ≤ λ1.

3. Preliminaries

3.1. Fourier analysis on Zd. If f : Zd → C is a function for which∑
x∈Zd

|f(x)| <∞

we will say that f ∈ `1(Zd) and define

‖f‖1 =
∑
x∈Zd

|f(x)|.

For f ∈ `1 we define its Fourier transform f̂ : Td → C by

f̂(ξ) =
∑
x∈Zd

f(x)e−2πix·ξ

noting that the summability assumption on f ensures that the series defining f̂ converges uniformly to a
continuous function on the torus Td, which we will freely identify with the unit cube [0, 1)d in Rd.

Furthermore, Parseval’s identity, namely that if f, g ∈ `1 then

〈f, g〉 :=
∑
x∈Zd

f(x)g(x) =

∫
Td
f̂(ξ)ĝ(ξ) dξ

is a simply and immediate consequence of the familiar orthogonality relation∫
Td
e2πix·ξdξ =

{
1 if x = 0

0 if x 6= 0
.
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Defining the convolution of f and g to be

f ∗ g(x) =
∑
y∈Zd

f(x− y)g(y)

it follows that if f, g ∈ `1 then f ∗ g ∈ `1 with

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 and f̂ ∗ g = f̂ ĝ.

Finally, we recall following consequence of the Poisson Summation Formula, namely that if ψ is a Schwartz
function on Rd, then

(6) ψ̂(ξ) =
∑
y∈Zd

ψ̃(ξ − y)

where

(7) ψ̃(ξ) =

∫
Rd
ψ(x)e−2πix·ξ dx

denotes the Fourier transform on Rd of ψ.

3.2. Counting differences in Sλ. Let A ⊆ BN , where BN ⊆ Zd denotes some arbitrary translate of the
cube {1, . . . , N}d, and recall that we are denoting the discrete sphere of radius

√
λ by Sλ, namely

Sλ := {x ∈ Rd : |x|2 = λ} ∩ Zd.

It is easy to verify, using the properties of the Fourier transform discussed above, that

(8)
∑
x∈A

|A ∩ (x+ Sλ)|
|Sλ|

= 〈1A,Aλ(1A)〉 =

∫
|1̂A(ξ)|2σ̂λ(ξ) dξ

where Aλ(f)(x) denotes the spherical average

(9) Aλ(f)(x) := f ∗ σλ(x) =
1

|Sλ|
∑
y∈Sλ

f(x− y).

3.3. Exponential sum estimates. In light of (8) we will naturally be interested estimates for the Fourier
transform of the surface measure σλ, namely

(10) σ̂λ(ξ) :=
1

|Sλ|
∑
x∈Sλ

e−2πix·ξ.

It is clear that whenever |ξ|2 � λ−1 there can be no cancellation in the exponential sum (10), in fact it is
easy to verify that the same is also true whenever ξ is close to a rational point with small denominator. The
following Proposition is a precise formulation of the fact that this is the only obstruction to cancellation.

Proposition 1 (Key exponential sum estimates, Proposition 1 in [5]). Let η > 0. If λ ≥ Cη−4 and

ξ /∈
(
q−1
η Z

)d
+ {ξ ∈ Rd : |ξ|2 ≤ η−1λ−1},

then ∣∣∣ 1

|Sλ|
∑
x∈Sλ

e−2πix·ξ
∣∣∣ ≤ η.
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3.4. Smooth cutoff functions. It will be convenient to introduce a smooth function ψq,L whose Fourier
transform (on Zd) will serve as a substitute for the characteristic function of the set

Mq,L =
(
q−1Z

)d
+ {ξ ∈ Rd : |ξ| ≤ L−1}.

Towards this end, let ψ : Rd → (0,∞) be a Schwartz function satisfying

1 = ψ̃(0) ≥ ψ̃(ξ) ≥ 0 and ψ̃(ξ) = 0 for |ξ| > 1

where ψ̃ denotes the Fourier transform (on Rd) of ψ. For a given q ∈ N and L ≥ q we define

(11) ψq,L(x) =

{(
q
L

)d
ψ
(
x
L

)
if x = (qZ)d)

0 otherwise

It follows from the Poisson summation formula that the Fourier transform (on Zd) of ψq,L takes the form

(12) ψ̂q,L(ξ) =
∑
`∈Zd

ψ̃

(
L

(
ξ − `

q

))
and is supported on Mq,L.

3.5. Properties of ψq,L and ψ̂q,L. We first note that since ψ̃ is compactly supported and q ≤ L, it follows
from (12) that ∑

x∈Zd
ψq,L(x) = ψ̂q,L(0) =

∑
`∈Zd

ψ̃(`L/q) = ψ̃(0) = 1.

We next make the simple but important observation that ψ may be chosen so that for any η > 0, the

function 1− ψ̂q,L will be essentially supported on the complement of Mq,η−1L in the sense that

(13)
∣∣1− ψ̂q,L(ξ)

∣∣� η

whenever ξ ∈Mq,η−1L.

Finally we record a precise formulation of the fact that ψq,L is essentially supported on a box of size η−1L
and is approximately constant on smaller scales.

Lemma 1. Let η > 0 and 1 ≤ q ≤ L, then

(14)
∑

|x|≥η−1L

ψq,L(x)� η.

and

(15) ‖χq,L ∗ ψq,L1
− ψq,L1

‖1 � η

whenever L1 ≥ η−1L, where

(16) χq,L(x) =

{(
q
L

)d
if x ∈ (qZ)d ∩ [−L2 ,

L
2 ]d

0 otherwise
.

Proof. Estimate (14) is easily verified using the fact that ψ is a Schwartz function on Rd as∑
|x|≥η−1L

ψq,L(x) =
( q
L

)d ∑
`∈Zd

|`|≥η−1L/q

ψ(`q/L)�
( q
L

)d ∑
`∈Zd

|`|≥η−1L/q

(
1 +
|`|q
L

)−d−1

� η.

To verify estimate (15) we make use of the fact that both ψ and its derivative are rapidly decreasing,
specifically

‖χq,L ∗ ψq,L1
− ψq,L1

‖1 ≤
( q
L

)d( q

L1

)d ∑
x∈(qZ)d

∑
y∈(qZ)d∩[−L2 ,

L
2 ]d

∣∣∣ψ(x− y
L1

)
− ψ

( x
L1

)∣∣∣
≤ L

L1

(
q

L1

)d ∑
x∈(qZ)d

(
1 +
|x|
L1

)−d−1

≤ L

L1
. �
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4. Reducing Theorems 3 and 4 to Key Dichotomy Propositions

First a definition.

Definition 2 (Definition of (η, L)-uniform distribution). Let N be a large positive integer and BN ⊆ Zd
denotes some arbitrary translate of the cube {1, . . . , N}d. For any η > 0 and positive integer L with the
property that qη|L|N we define A ⊆ BN to be (η, L)-uniformly distributed if

|A ∩BL ∩ (s+ (qηZ)d)|
(L/qη)d

≤ (1 + η2)
|A|
Nd

holds for all s ∈ {1, . . . , qη}d and each sub-cube BL in the partition of the original cube BN into (N/L)d

sub-cubes each of “sidelength” L.

4.1. Dichotomy Propositions. As with the second author’s approach in [5], itself adapted from [1], we
will deduce Theorems 3 and 4 as consequences of the following quantitative finite versions.

Proposition 2 (Dichotomy for Theorem 3). Let ε > 0, 0 < η � ε2, and (L,N) be a pair of integers such
that qη|L|N . If A ⊆ BN ⊆ Zd with d ≥ 5 is (η, L)-uniformly distributed, then for all integers λ satisfying
η−4L2 ≤ λ ≤ η11N2 one of the following statements must hold:

(i) there exists x ∈ A such that
|A ∩ (x+ Sλ)|

|Sλ|
>
|A|
Nd
− ε

(ii)
1

|A|

∫
Ωλ

|1̂A(ξ)|2 dξ � ε

where Ωλ = Ωλ(η, qη) denotes the set theoretic sum
(
q−1
η Z

)d
+ {ξ ∈ Rd : η2 λ−1 ≤ |ξ|2 ≤ η−2λ−1}.

Proposition 3 (Dichotomy for Theorem 4). Let ε > 0, 0 < η � ε3, and A ⊆ BN ⊆ Zd with d ≥ 5.

If A is (η, L)-uniformly distributed (this implicitly assumes that qη|L|N), then for all integer pairs (λ0, λ1)
that satisfy η−4L2 ≤ λ0 ≤ λ1 ≤ η11N2 one of the following statements must hold:

(i) there exists x ∈ A with the property that one has

|A ∩ (x+ Sλ)|
|Sλ|

>
|A|
Nd
− ε for all λ0 ≤ λ ≤ λ1

(ii)
1

|A|

∫
Ωλ0,λ1

|1̂A(ξ)|2 dξ � ε2

where Ωλ0,λ1
= Ωλ0,λ1

(η, qη) =
(
q−1
η Z

)d
+ {ξ ∈ Rd : η2 λ−1

1 ≤ |ξ|2 ≤ η−2λ−1
0 }.

4.2. The Proof of Theorems 3 and 4. We naturally start with a short Lemma relating our two notions
of uniform distribution.

Lemma 2. If A ⊆ Zd is η-uniformly distributed. Then there exists a constant L(A, η) such that for every
positive integer L ≥ L(A, η) satisfying qη|L the following holds: There exist arbitrarily large positive integers
N satisfying L|N such that

(i)
|A ∩BN |
Nd

≥ δ∗(A)− ε/2 and (ii) A ∩BN is (2η, L)-uniformly distributed

hold simultaneously for some cube BN .

Proof. By our assumption there exists a positive integer L(A, η) such that if L′ = L(A, η), then

δ(A|(s+ (qηZ)d) ∩BL′) :=
|A ∩ (s+ (qηZ)d) ∩BL′ |
|(s+ (qηZ)d) ∩BL′ |

≤ (1 + 2η2) δ∗(A)

for any s ∈ {1, . . . , qη}d and any cube BL′ of size L′. Let L ≥ L′ such that qη|L.
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Now choose any cube BN ′ of size N ′ � ε−1η−2L such that δ(A|BN ′) ≥ δ∗(A)(1 − εη2/20). Choosing
N ′ ≤ N ≤ N ′ +L one can ensure L|N and δ(A|BN ) ≥ δ∗(A)(1− εη2/10), thus (i) holds (easily). To see (ii)
note that |(s+ (qηZ)k) ∩BL| = (L/qη)d and for A′ := A ∩BN and any cube BL ⊂ BN of size L we have

|A′ ∩ (s+ (qηZ)d) ∩BL|
(L/qη)d

≤ (1 + 3η2/2) δ∗(A) ≤ (1 + 2η2)(1− εη2/10)−1 |A′|
Nd
≤ (1 + 4η2)

|A′|
Nd

. �

4.2.1. Proof that Proposition 2 implies Theorem 3. Let ε > 0 and 0 < η � ε2. Suppose that A ⊆ Zd with
d ≥ 5 is an η-uniformly distributed set for which the conclusion of Theorem 3 fails to hold, namely that
there exists arbitrarily large integers λ for which

|A ∩ (x+ Sλ)|
|Sλ|

≤ δ∗(A)− ε

for all x ∈ A. For a fixed integer J � ε−1 we choose a sequence {λ(j)}Jj=1 of such λ’s with the property that

λ(1) ≥ η−4L2, λ(j) ≤ η4λ(j+1) for 1 ≤ j < J , and λ(J) ≤ η11N2 with L and N satisfying the conclusion of
Lemma 2. From Lemma 2 we obtain a set A ∩BN , which we will abuse notation and denote by A.

An application Proposition 2 thus allows us to conclude that for this set one must have

(17)

J∑
j=1

1

|A|

∫
Ω
λ(j)

|1̂A(ξ)|2 dξ � Jε > 1.

On the other hand it follows from the disjointness property of the sets Ωλ(j) , which we guaranteed by our
initial choice of sequence {λ(j)}, and Plancherel that

(18)

J∑
j=1

1

|A|

∫
Ω
λ(j)

|1̂A(ξ)|2 dξ ≤ 1

|A|

∫
Td
|1̂A(ξ)|2 dξ = 1

giving a contradiction. �

4.2.2. Proof that Proposition 3 implies Theorem 4. Let ε > 0 and 0 < η � ε3. Suppose that A ⊆ Zd with
d ≥ 5 is an η-uniformly distributed set for which the conclusion of Theorem 4 fails to hold, namely that
there exists arbitrarily large integer pairs (λ0, λ1) such that for all x ∈ A

|A ∩ (x+ Sλ)|
|Sλ|

≤ δ∗(A)− ε

for some λ0 ≤ λ ≤ λ1.

For a fixed integer J � ε−2 we choose a sequence of such pairs {(λ(j)
0 , λ

(j)
1 }Jj=1 with the property that

λ
(1)
0 ≥ η−4L2, λ

(j)
0 ≤ η4λ

(j+1)
1 for 1 ≤ j < J , and λ

(J)
1 ≤ η11N2 with L and N satisfying the conclusion of

Lemma 2. From Lemma 2 we obtain a set A ∩BN , which we will abuse notation and denote by A.

An application Proposition 3 thus allows us to conclude that for this set one must have

(19)

J∑
j=1

1

|A|

∫
Ω
λ
(j)
0 ,λ

(j)
1

|1̂A(ξ)|2 dξ � Jε2 > 1.

On the other hand it follows from the disjointness property of the sets Ω
λ
(j)
0 ,λ

(j)
1

, which we guaranteed by

our initial choice of pair sequence {(λ(j)
0 , λ

(j)
1 )}, and Plancherel that

(20)

J∑
j=1

1

|A|

∫
Ω
λ
(j)
0 ,λ

(j)
1

|1̂A(ξ)|2 dξ ≤ 1

|A|

∫
Td
|1̂A(ξ)|2 dξ = 1

giving a contradiction. �
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5. Proof of Proposition 2

Let f = 1A and δ = |A|/Nd. Suppose that η−4L2 ≤ λ ≤ η11N2 and that (i) does not hold, then

(21) 〈f,Aλ(f)〉 ≤ 〈f, δ − ε〉 = (δ − ε)|A|.

We now define

(22) f1 = f ∗ ψqη,L1
and f2 = f ∗ ψqη,L2

with L1 = η−1/2λ1/2 and L2 = η λ1/2. Since

(23)
∣∣ψ̂qη,L2

(ξ)− ψ̂qη,L1
(ξ)
∣∣� η1/2

whenever ξ /∈ Ωλ = Mqη,L2 \Mqη,η−1/2L1
, the proof of Proposition 2 is therefore reduced (via Parseval) to

showing that if (21) holds, then

(24) |〈f,Aλ(f2 − f1)〉| � ε|A|.

The observation that

|〈f,Aλ(f2 − f1)〉| ≥ |〈f,Aλ(f1)〉| − 〈f,Aλ(f)〉 − |〈f,Aλ(f − f2)〉|

further reduces the entire argument to

Lemma 3 (Main term). If f1 := f ∗ ψqη,L1 with L1 = η−1/2λ1/2, then |〈f,Aλ(f1)〉| ≥ (δ − Cη1/2)|A|.

Lemma 4 (Error term). If f2 := f ∗ ψqη,L2 with L2 = η λ1/2, then |〈f,Aλ(f − f2)〉| ≤ η1/2|A|.

Proof of Lemma 3. Since A is (η, L)-uniformly distributed it follows that f ∗ χq,L(x) ≤ δ(1 + η2) for all
x ∈ Zd.

As L1 ≥ η−5/2L and η1/2 � δ it further follows from the properties of ψq,L discussed in Section 3.5 that

f1(x) = f ∗ ψq,L1(x) ≤ f ∗ χq,L ∗ ψq,L1(x) + |f ∗ (ψq,L1 − χq,L ∗ ψq,L1)(x)|

≤ δ(1 + η2) + Cη5/2 ≤ δ(1 + Cη2).

Let N ′ = N + η−5/2L1 and let BN ′ be a cube of size N ′ centered at the same point as BN . As f is
supported on BN and η1/2 � δ we have

(25)
∑
x∈BN

f1(x) =
∑
x∈Zk

f1(x)−
∑

x/∈BN′

f1(x)−
∑

x∈BN′\BN

f1(x) ≥ δ(1− Cη2)|BN |.

Indeed, since N � η−5L1 we have

|BN ′\BN |
|BN |

�
(
N ′

N
− 1

)
� η−5/2L1

N
� η5/2

while from (14) we have∑
x/∈BN′

f1(x) ≤
∑

|y|�η−5/2L1

ψq,L1
(y)

∑
x

f(x− y) ≤ C η5/2|BN |.

We now define the set

E := {x ∈ BN ; f1(x) ≤ δ − Cη}.
From estimate (25) it follows that

δ(1− Cη2)|BN | ≤
∑
x∈E

f1(x) +
∑

x∈BN\E

f1(x) ≤ |E|(δ − Cη) + (|BN | − |E|)δ(1 + Cη2)

and hence that |E| ≤ Cη δ|BN | = Cη|A|. Using the bound

f1(x) ≥ δ − Cη − 1E(x)

for x ∈ BN it follows that

〈f,Aλ(f1)〉 ≥ 〈f, δ − Cη〉 − |〈f,Aλ(1E)〉| ≥ (δ − Cη)|A| − |〈f,Aλ(1E)〉|.
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The result follows via an application of Cauchy-Schwarz and the `2 boundedness of the operator Aλ,
namely that ∑

x∈Zd
|Aλ(g)(x)|2 ≤ C

∑
x∈Zd

|g(x)|2

for any g ∈ L2, which is an immediate consequence of Plancherel and the fact that |σ̂λ(ξ)| ≤ 1 for all ξ ∈ Td.
Indeed, with g = 1E , we thus obtain

|〈f,Aλ(1E)〉| ≤

( ∑
x∈BN

f(x)2

)1/2( ∑
x∈BN

1E(x)

)1/2

≤ |A|1/2|E|1/2 ≤ η1/2|A|. �

Proof of Lemma 4. Note that

|〈f,Aλ(f − f2)〉| ≤
∫
|f̂(ξ)|2|1− ψ̂qη,L2(ξ)| |σ̂λ(ξ)| dξ.

Now Proposition 1 ensures that

|σ̂λ(ξ)| ≤ η
for all ξ /∈Mqη,η−1/2L2

and ψ was constructed so that

(26)
∣∣1− ψ̂qη,L2

(ξ)
∣∣� η1/2

whenever ξ ∈Mqη,η−1/2L2
. The result follows via Plancherel as |σ̂λ(ξ)| ≤ 1 for all ξ ∈ Td. �

6. Proof of Proposition 3

Suppose that we have a pair (λ0, λ1) satisfying η−4L2 ≤ λ0 ≤ λ1 ≤ η11N2, but for which (i) does not
hold. It follows that there must exist λ0 ≤ λ ≤ λ1 such that

〈f,Aλ(f)〉 ≤ (δ − ε)|A|

and hence that

(27) 〈f,A∗(1− f)〉 ≥ (1− δ + ε/2)|A|

where 1 = 1BN and for any function g : Zd → C, A∗(g) denotes the discrete spherical maximal function
defined by

A∗(g)(x) := sup
λ0≤λ≤λ1

|Aλ(g)(x)|.

Proposition 4 (`2-Boundedness of the Discrete Spherical Maximal Function [6]). If d ≥ 5, then∑
x∈Zd

|A∗(g)(x)|2 ≤ C
∑
x∈Zd

|g(x)|2.

In light of Proposition 4, the proof of Proposition 3 reduces (via Cauchy-Schwarz and Plancherel) to
showing that if (27) holds, then

(28) |〈f,A∗(f2 − f1)〉| � ε|A|

with f1 = f ∗ ψqη,L1 and f2 = f ∗ ψqη,L2 , where now L1 = η−1/2λ
1/2
1 and L2 = η λ

1/2
0 .

Since

|〈f,A∗(f2 − f1)〉| ≥ |〈f,A∗(1− f)〉| − 〈f,A∗(1− f1)〉 − |〈f,A∗(f − f2)〉|
the whole argument reduces to

Lemma 5 (Main term). If f1 := f ∗ ψqη,L1
with L1 = η−1/2λ

1/2
1 , then

|〈f,A∗(1− f1)〉| ≤ (1− δ + Cη1/2)|A|.

Lemma 6 (Error term). If f2 := f ∗ ψqη,L2
with L2 = η λ

1/2
0 , then |〈f,A∗(f − f2)〉| ≤ Cη1/3|A|.



DISTANCES IN DENSE SUBSETS OF Zd 9

6.1. Proof of Lemma 5. We use the lower bound

f1(x) ≥ δ − Cη − 1E(x)

for x ∈ BN together with the bound |E| ≤ Cη δ|BN | proved in Lemma 3. Then, as in the proof of Lemma
3, we obtain

|〈f,A∗(1− f1)〉| ≤ (1− δ + Cη)|A|+ |〈f,A∗(1E)〉|.

The result follows via an application of Cauchy-Schwarz and Proposition 4 since

|〈f,A∗(1E)〉| ≤

( ∑
x∈BN

f(x)2

)1/2( ∑
x∈BN

1E(x)

)1/2

≤ |A|1/2|E|1/2 ≤ η1/2|A|.

�

6.2. Proof of Lemma 6. Note that

A∗(f − f2) = sup
λ0≤λ≤λ1

|(f − ψqη,L2
∗ f) ∗ σλ| = sup

λ0≤λ≤λ1

|f ∗ (σλ − σλ ∗ ψqη,L2
)| =: A∗,η(f)

where the maximal operator A∗,η corresponds to the “mollified” multiplier σ̂λ,η := σ̂λ(1− ψ̂qη,L2). Thus in
order to prove the Lemma 6 it is suffices establish the following proposition.

Proposition 5 (`2-Decay of the “Mollified” Discrete Spherical Maximal Function). Let f ∈ `2, then for any
η > 0 we have

(29)
∑
x∈Zd

|A∗,η(f)(x)|2 ≤ Cη2/3
∑
x∈Zd

|f(x)|2.

Proof of Proposition 5. We follow the proof of Proposition 4 given in [6]. For each x ∈ Zd we now define

(30) Ãλf(x) = Aλ2f(x)

noting that A∗f(x) = sup
λ
1/2
0 ≤λ≤λ1/2

1
Ãλf(x) =: Ã∗f(x) and Ã∗,ηf(x) = Ã∗(f − f2)(x).

We now recall the approximation to Ãλ given in Section 3 of [6] as a convolution operator Mλ acting on
functions on Zd of the form

(31) Mλ = cd

∞∑
q=1

∑
1≤a≤q
(a,q)=1

e−2πiλa/qMa/q
λ

where for each reduced fraction a/q the corresponding convolution operator Ma/q
λ has Fourier multiplier

(32) m
a/q
λ (ξ) :=

∑
`∈Zk

G(a/q, `)ϕq(ξ − `/q)σ̃λ(ξ − `/q)

with ϕq(ξ) = ϕ(qξ) a standard smooth cut-off function, G(a/q, l) a normalized Gauss sum, and σ̃λ(ξ) = σ̃(λξ)
where σ̃(ξ) is the Fourier transform (on Rd) of the measure on the unit sphere in Rd induced by Lebesgue
measure and normalized to have total mass 1. By Proposition 4.1 in [6] we have

(33)
∥∥∥ sup

Λ≤λ≤2Λ
|Ãλ(f)−Mλ(f)|

∥∥∥
`2(Zd)

≤ CΛ−1/2‖f‖`2(Zd)

provided d ≥ 5. Writing M∗(f) := sup
λ
1/2
0 ≤λ≤λ1/2

1
|Mλ(f)| and M∗,η(f) :=M∗(f − f2), this implies

(34) ‖Ã∗,η(f)−M∗,η(f)‖`2 = ‖Ã∗(f − f2)−M∗(f − f2)‖`2 ≤ Cλ
−1/4
0 ‖f − f2‖`2 ≤ Cλ

−1/4
0 ‖f‖`2 .

Thus by choosing λ0 � η−4 matters reduce to showing (29) for the operator M∗,η.

For a given reduced fraction a/q define the maximal operator

(35) Ma/q
∗ (f) := sup

λ
1/2
0 ≤λ≤λ1/2

1

|Ma/q
λ (f)|,

where Ma/q
λ is the convolution operator with multiplier m

a/q
λ (ξ). It is proved in Lemma 3.1 of [6] that

(36) ‖Ma/q
∗ (f)‖`2 ≤ Cq−d/2‖f‖`2 .
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We will show here that if q ≤ Cη−2/3, then

(37) ‖Ma/q
∗ (f − f2)‖`2 ≤ Cη1/3q−d/2‖f‖`2 .

Taking estimates (36) and (37) for granted, one obtains

(38) ‖M∗(f − f2)‖`2 �
(
η1/3

∑
1≤q≤Cη−2/3

q−d/2+1 +
∑

q≥Cη−2/3

q−d/2+1
)
‖f‖`2 � η1/3‖f‖`2

as required. It thus remains to prove (37).

Writing ϕq(ξ) = ϕ′q(ξ)ϕq(ξ), with a suitable smooth cut-off function ϕ′, we can introduce the decomposi-
tion

(39) m
a/q
λ (ξ) =

(∑
`∈Zk

G(a/q, `)ϕ′q(ξ − `/q)
)(∑

`∈Zk
ϕq(ξ − `/q)σ̃(ξ − `/q)

)
=: ga/q(ξ)nqλ(ξ),

since for each ξ at most one term in each of the above sums is non-vanishing. Accordingly

(40) Ma/q
∗ (f − f2) = Ga/q N q

∗ (f − f2)

where the maximal operator N q
∗ and the convolution operator Ga/q correspond to the multipliers nqλ and

ga/q respectively. Now by the standard Gauss sum estimate we have |ga/q(ξ)| � q−d/2 uniformly in ξ, hence

(41) ‖Ga/q N q
∗ (f − f2)‖`2 � q−d/2‖N q

∗ (f − f2)‖`2 .

Thus by our choice qη := lcm{1 ≤ q ≤ Cη−2} it remains to show that if q divides qη then

(42) ‖N q
∗ (f − f2)‖`2 � η1/3‖f‖`2 .

As before we may write N q
∗,η(f) = N q

∗ (f − f2), and note that this is a maximal operator with multiplier

(43) nqλ(ξ)(1− ψ̂qη,L2
)(ξ) =

∑
`∈Zd

ϕq(ξ − `/q)(1− ψ̂qη,L2
)(ξ − `/q)σ̃λ(ξ − `/q).

For a fixed q, the multiplier ϕq(1− ψ̂qη,L2)σ̃λ is supported on the cube [− 1
2q ,

1
2q ]d thus by Corollary 2.1 in [6]

‖N q
∗,η‖`2→`2 ≤ C ‖Ñ q

∗,η‖L2→L2

where the latter is the maximal operator corresponding to the multipliers ϕq(1− ψ̂qη,L2
)σ̃λ, for λ

1/2
0 ≤ λ ≤

λ
1/2
1 , acting on L2(Rd). By the definition of the function ψq,L

|1− ψ̂qη,L2
(ξ)| � min{1, L2|ξ|},

thus from Theorem 6.1 (with j = 1) in [3] we obtain

‖Ñ q
∗,η‖L2→L2 �

(
L2

λ
1/2
0

)1/3

� η1/3

which establishes (42) and completes the proof. �
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