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Abstract. We provide a new direct proof of the `2-boundedness of the Discrete Spherical Maximal Function
that neither relies on abstract transference theorems (and hence Stein’s Spherical Maximal Function Theorem)

nor on delicate asymptotics for the Fourier transform of discrete spheres.

1. Introduction

The study of discrete analogues of central constructs of Euclidean harmonic analysis, initiated by Bourgain
[1], has grown into a vast, active area of research. An important result in this development is the `p-
boundedness of the so-called discrete spherical maximal function [5].

Beyond its own intrinsic interest, this operator, or more precisely certain “mollified variants”, play a crucial
role in studying certain geometric point configurations in positive density subsets of the integer lattice, see [2].

Let d ≥ 5, λ2 ∈ N, and Nλ := |{m ∈ Zd : |m| = λ}|. It is well-known, see for example [7], that

cdλ
d−2 ≤ Nλ ≤ Cdλd−2

for some constants 0 < cd < Cd. For f : Zd → R define the discrete spherical averages

Aλf(n) = N−1
λ

∑
|m|=λ

f(n−m)

and the maximal operator

A∗f(n) = sup
λ
|Aλf(n)|.

The variables n,m in the two equations above, and throughout this short note, are always assumed to be
in Zd. Furthermore, the parameter λ will always be assumed to satisfy λ2 ∈ N.

In [5] it was shown that for p > d/(d− 2) one has the estimate

‖A∗f‖p ≤ Cp,d ‖f‖p
where ‖f‖p = (

∑
x |f(x)|p)1/p denotes the `p(Zd) norm of the function f . It was further noted in [5] that the

condition that d ≥ 5 and p > d/(d− 2) are both sharp.

The approach taken in [5] had three main steps. The first step was to approximate Aλ by an infinite

sum of simpler operators M
a/q
λ , each associated to a reduced fraction a/q, with 0 < a/q ≤ 1. A general

abstract transference theorem, which allows one to pass from certain convolution operators on Rd to analogous

operators on Zd, was then used to analyze each M
a/q
λ . In particular, this approach makes use of Stein’s

Spherical Maximal Function Theorem [6]. The final step of the argument is to show that the approximation
taken in the first step is adequate, this step uses the full asymptotic expansion for the Fourier transform of
(the indicator function of) the discrete sphere of radius λ in Zd.

In this note we provide a short direct proof of the `2 case of the main result in [5]. Our direct proof
relies on the observation that one obtains gains in `2 for maximal operators at a single dyadic scale, when
applied to functions whose Fourier transform is suitably localized away from rational points with suitably
small denominators, specifically Proposition 1 below. This combined with an almost orthogaonality argument
quickly leads to the proof Theorem 1 below. Note that we do not need the full asymptotic expansion of the
underlying multipliers neither any transference arguments to utilise Stein’s spherical maximal theorem.
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Our main result is the following,

Theorem 1. If d ≥ 5, then
‖A∗f‖2 ≤ Cd ‖f‖2.

2. Key estimates for maximal operators at a single dyadic scale

Recall that for f ∈ `1(Zd) we define its Fourier transform f̂ : Td → C by

f̂(α) =
∑
n∈Zd

f(n)e−2πin·α.

Before stating Proposition 1 we need to introduce some additional notation. For any integer j ≥ 0 we let

qj = lcm{1, 2, . . . , 2j} and note that qj � e2j . For any non-negative integers j and k that satisfy 2j ≤ k , we
let

(1) Ωj,k := {α ∈ Td : α ∈ [−2j−k, 2j−k]d + (q−1
j Z)d}.

Proposition 1. If d ≥ 5, k ∈ N, and 1 ≤ j ≤ log2(k)− 2, then one has the estimate

(2)
∥∥∥ sup

2k≤λ≤2k+1

|Aλf |
∥∥∥

2
� 2−j/2j−1‖f‖2

whenever supp f̂ ⊆ Ωcj,k, where Ωcj,k denotes the complement of Ωj,k.

In the Proposition above, and for the rest of this short note, we use the notation A� B to denote that
A ≤ CB for some constant C that may depend on d, which we consider fixed and greater than or equal to 5.

The proof of Proposition 1 is presented in Section 4, while the reduction of Theorem 1 to Proposition 1 is
presented in Section 3 below. We conclude this section by noting that Proposition 1 immediately implies the
following “mollified variant” of Theorem 1 which is of independent interest.

Theorem 2. If d ≥ 5, η > 0, and L ≥ q4
η, then one has the estimate

(3)
∥∥∥ sup
λ≥η−2L

|Aλf |
∥∥∥

2
� η ‖f‖2

whenever supp f̂ ⊆ Ωcη,L, with Ωη,L = {α ∈ Td : α /∈ [−L−1, L−1]d + (q−1
η Z)d} and qη = lcm{1 ≤ q ≤ η−2}.

Indeed, note that in proving (3) one may restrict the sup to η−2L ≤ λ ≤ 2η−2L. Choosing k, j ∈ N such
that 2k ≤ η−2L ≤ 2k+1 and 2j ≥ η−2 we have that 2k−j ≤ L and hence Ωj,k ⊆ Ωη,L. Applying Proposition 1
with j and k chosen as above implies Theorem 2.

This provides a slight strengthening of Proposition 5 in [2], more importantly it provides a significantly
simpler direct proof.

3. Proof of Theorem 1

3.1. A smooth sampling function supported on Ωj,k. Let ψ ∈ S(Rd) be a Schwartz function satisfying

1Q(ξ) ≤ ψ̃(ξ) ≤ 12Q(ξ)

where Q = [−1/2, 1/2]d and

ψ̃(ξ) :=

∫
Rd
ψ(x)e−2πix·ξdx

denote the Fourier transform of ψ on Rd. For a given q ∈ N and L > q we define ψq,L : Zd → R as

ψq,L(m) =

{(
q
L

)d
ψ
(
m
L

)
if m ∈ (qZ)d

0 otherwise

Writing m = qr + s with r ∈ Zd and s ∈ Zd/qZd, it follows from Poisson summation that

ψ̂q,L(α) =
∑
m∈Zd

ψ(m)e−2πim·α
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is a q−1-periodic function on Td that satisfies

ψ̂q,L(α) =
∑
`∈Zd

ψ̃(L(α− `/q)).

For a given k ∈ N and 0 ≤ j ≤ Jk := [log2(k)]− 2, we now define the sampling function

(4) Ψj,k = ψqj ,2k−j

and note that supp Ψ̂j,k ⊆ Ωj,k.

Finally we define ∆Ψj,k = Ψj+1,k −Ψj,k and note the important almost orthogonality property they enjoy.

Lemma 1. There exists a constant C = CΨ > 0 such that∑
k≥2j

|∆̂Ψk,j(α)|2 ≤ C

uniformly in j ∈ N and α ∈ Td.

Proof of Lemma 1. Note that Ωk+1,j ⊆ Ωk,j . Now fix j ∈ N. If α /∈ Ω2j ,j , then ∆̂Ψk,j(α) = 0.

If α ∈ Ω2j ,j , then we define k1 = k1(j) := max{k ≥ 2j : α ∈ Ωk,j}. Then there exists a unique

`1 ∈ Zd such that |α − `1/qj | ≤ 2j−k1 . Clearly ∆̂Ψk,j(α) = 0 if k > k1, while if 2j ≤ k ≤ k1 we have

Ψ̂k,j(α) = Ψ̃(2k−j(α− `1/qj)). It therefore follows, by writing ∆Ψk,j = (Ψk,j+1 − 1) + (1−Ψk,j), that

|∆̂Ψk,j(α)| ≤ CΨ 2k−j |α− `1/qj | ≤ CΨ 2k−k1

and hence that ∑
k≥2j

|∆̂Ψk,j(α)|2 ≤ CΨ

∑
1≤k≤k1

2−2(k1−k) ≤ 4

3
CΨ. �

3.2. Proof that Proposition 1 implies Theorem 1. Let

(5) Mkf := sup
2k≤λ≤2k+1

|Aλf |.

Writing

f = f ∗Ψk,0 +

Jk−1∑
j=0

f ∗∆Ψk,j + (f − f ∗Ψk,Jk)

it follows by subadditivity that

(6) Mkf ≤Mk(f ∗Ψk,0) +

Jk−1∑
j=0

Mk(f ∗∆Ψk,j) +Mk(f − f ∗Ψk,Jk)

Theorem 1 will now follow from a few observations and applications of Proposition 1, in light of the fact
that

A∗f = sup
k
Mkf.

First we note that it is straightforward to verify that the first term on the right in (6) above satisfies

Mk(f ∗Ψk,0) ≤ CΨHf

uniformly in k, where

Hf(n) = sup
`>0

1

(2 · 2` + 1)d

∣∣∣ ∑
m∈[−2`,2`]d∩Zd

f(n−m)
∣∣∣

denotes the discrete Hardy-Littlewood maximal operator. Since, by the same arguments as in Euclidean
spaces, we have ‖Hf‖2 � ‖f‖2, it follows that

sup
k
‖Mk(f ∗Ψk,0)‖2 � ‖f‖2.
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For the middle terms in (6) we first note that

sup
k

Jk−1∑
j=0

Mk(f ∗∆Ψk,j)�
( ∞∑
k=0

∣∣∣Jk−1∑
j=0

Mk(f ∗∆Ψk,j)
∣∣∣2)1/2

Taking `2 norms of both sides of the inequality above and applying Minkowski’s inequality, followed by an
application of Proposition 1, gives∥∥∥sup

k

∑
0≤j≤Jk

Mk(f ∗∆Ψk,j)
∥∥∥

2
≤
∑
j

(∑
k≥2j

‖Mk(f ∗∆Ψk,j)‖22
)1/2

�
∑
j

2−j/2
(∑
k≥2j

‖f ∗∆Ψk,j‖22
)1/2

� ‖f‖2

where the last inequality above follows from Lemma 1.

One more application of Proposition 1 with j = [log2 k]− 2 to the last term in (6) gives∥∥∥sup
k
Mk(f − f ∗Ψk,Jk)

∥∥∥
2
≤
( ∞∑
k=1

‖Mk(f − f ∗Ψk,Jk)‖22
)1/2

�
( ∞∑
k=1

k−1(log2 k)−2
)1/2

‖f‖2 � ‖f‖2. �

4. Proof of Proposition 1

Fix ε = 2−2k. We start by observing that

1{|m|=λ}(m) =

∫ 1

0

e2πi(|m|2−λ2)tdt = e2πελ2

∫ 1

0

e2πi|m|2(t+iε)e−2πiλ2t dt

where 1{|m|=λ} denotes the indicator function of the discrete sphere of radius λ in Zd.
Since Nλ � λd−2 it therefore follows that

Mkf � sup
2k≤λ≤2k+1

1

λd−2

∫ 1

0

|f ∗ st| dt

where st(m) = e2πi|m|2(t+iε), and hence that

‖Mkf‖2 � ε(d−2)/2

∫ 1

0

‖f ∗ st‖2 dt ≤ ε(d−2)/2

(∫ 1

0

‖ŝt 1Ωcj,k
‖∞ dt

)
‖f‖2.

Thus, in order to prove Proposition 1 it suffices to show that

(7)

∫ 1

0

‖ŝt 1Ωcj,k
‖∞ dt� ε−(d−2)/22−j/2j−1.

To do this we will employ the circle method and decompose the interval into Farey arcs, that is neighborhoods
Va,q of reduced rationals a/q which allows us to estimate ŝt(ξ) by using Poisson summation and properties
of Gaussian sums. Specifically, we decompose the interval [0, 1] into neighborhoods of rationals whose
denominator is smaller than 2k as follows: Let

H = {a/q : 1 ≤ q ≤ 2k, 0 < a ≤ q, (a, q) = 1}
and define

Va,q =

{
t ∈ [0, 1] : |t− a/q| = min

r∈H
|t− r|

}
.

Note that, by Dirichlet’s principle, for every t ∈ [0, 1], there exists a/q ∈ H such that |t− a/q| ≤ 2−kq−1,
thus we have that |Va,q| ≤ 2−k+1q−1. Also, if a/q 6= a′/q′ with (a, q) = (a′, q′) = 1 and 1 ≤ q, q′ ≤ 2k then
|a/q − a′/q′| ≥ 1/(qq′) ≥ 2−kq−1, hence |Va,q| ≥ 2−kq−1. Thus the Farey arcs Va,q at level 2k provide a
partition (up to endpoints) of [0,1] into intervals of length |Va,q| ≈ 2−kq−1.

It follows from Poisson summation that for 1 ≤ a ≤ q, (a, q) = 1, 1 ≤ q ≤ 2k one has

(8) |ŝt(α)| ≤ q−d/2(ε+ |τ |)−d/2
∑
`∈Zd

e−
π
2 |α−`/q|

2/(ε+ε−1|τ |2)
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for each t ∈ Va,q with τ = t − a/q. The details of the calculation to derive estimate (8) are laid out more
carefully in [3], but they can be briefly summarize as follows: First write ŝt as a product of one dimensional
functions. An application of Poisson summation and a change of variables leaves a double sum that can
be recognized as a quadratic Gaussian sum, which can be bounded by q−1/2, and a sum of terms involving
s̃τ (`/q − α) which has a simple closed form. See formula (12) in [3].

Since |τ | ≤ 2−kq−1, it follows that q2(ε+ ε−1|τ |2)� 1, and hence that∑
`∈Zd

e−
π
2 |α−`/q|

2/(ε+ε−1|τ |2) � 1

which in turn implies that if t ∈ Va,q with t = a/q + τ , then

(9) ‖ŝt‖∞ � q−d/2(ε+ |τ |)−d/2.

We write

(10)

∫ 1

0

‖ŝtχΩc
j,k
‖∞ dt =

∑
q|qj

∑
(a,q)=1

∫
Va,q

‖ŝt 1Ωcj,k
‖∞dt +

∑
q-qj

∑
(a,q)=1

∫
Va,q

‖ŝt 1Ωcj,k
‖∞ dt.

In order to estimate the first double sum above we consider separately the case when |τ | ≥ 2j/2ε and
|τ | ≤ 2j/2ε. When |τ | ≥ 2j/2ε we use estimate (9) to bound it by

(11)

∑
q|qj

∑
(a,q)=1

∫
Va,q

q−d/2(ε+ |τ |)−d/2dt�
∑
q|qj

q−d/2+1

∫ ∞
ε2j/2

(ε+ |τ |)−d/2dτ

� ε−(d−2)/22−j(d−2)/4
∑
q|qj

q−d/2+1.

When |τ | ≤ 2j/2ε we note that because q|qj we have that

(12)
∑
`∈Zd

e−
π
2 |α−`/q|

2/(ε+ε−1|τ |2) = e−
π
2 |α−`0/q|

2/(ε+ε−1|τ |2) +
∑
` 6=`0

e−
π
2 |α−`/q|

2/(ε+ε−1|τ |2)

where `0 denotes the nearest integer to qα. For every α ∈ Ωc
j,k we have |α− `0

q | = |α−
qj`0/q
qj
| ≥ 2j−k and

hence that

(13) |e−π2 |α−`0/q|
2/(ε+ε−1|τ |2)| � e−c(2

j−k)2/2j−2k

� e−c2
j

since ε+ ε−1|τ |2 ≤ 2 · 2jε� 2j−2k. To estimate the sum where ` 6= `0 in (12) above we again use the fact
that ε+ ε−1|τ |2 � 2j−2k. Since |qα− `| ≥ 1/2 for ` 6= `0 and q|qj with j ≤ log2 k − 2 it follows that

q2(ε+ ε−1|τ |2)� (22j )22j−2k ≤ 2k2−2k ≤ 2−k

and hence that

(14)
∑
` 6=`0

e−
π
2 |α−`/q|

2/(ε+ε−1|τ |2) � 2−c2
k

.

Combining estimates (13), and (14) it follows that

‖ŝt 1Ωcj,k
‖∞ � q−d/2(ε+ |τ |)−d/2 (e−c2

j

+ 2−c2
k

)

whenever |τ | ≤ 2j/2ε and q|qj . Further combining this with (11) we obtain that∑
q|qj

∑
(a,q)=1

∫
Va,q

‖ŝt 1Ωcj,k
‖∞dt�

∑
q|qj

q−d/2+1ε−(d−2)/2
[
(e−c2

j

+ 2−c2
k

) + 2−j(d−2)/4
]

� ε−(d−2)/2 2−j(d−2)/4
∑
q|qj

q−d/2+1

� ε−(d−2)/2 2−j(d−2)/4

as the sum over q converges for d ≥ 5.

In order to estimate the second double sum in (10) we need the following observation, whose proof we
delay until after completing the proof of Proposition 1.
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Lemma 2. Given r > 1, k ∈ N, then ∑
q-Qk

q−r �r k
−r+1(log k)−1

where Qk = lcm{1 ≤ q ≤ k} and �r denotes less than a constant depending on r.

Using estimate (9) and Lemma 2 one can bound the second double sum in (10) above by∑
q-qj

∑
(a,q)=1

∫
Va,q

q−d/2(ε+ |τ |)−d/2dt� ε−(d−2)/2
∑
q-qj

q−d/2+1 � ε−(d−2)/22−j(d−4)/2j−1

whenever d ≥ 5 completing the proof of Proposition 1. �

Proof of Lemma 2. If q ∈ N such that q - Qk, then either a large power of a small prime divides q, or a
large prime divides q. Explicitly, for prime p ≤ k, let ap = min{a ∈ N : k < pa}. If q - Qk then one of the
following must occur:

(i) there exists a p > k such that q = pq1

(ii) there exists a p < k such that q = papq1.

In the first case ∑
(i) holds

q−r ≤
∑
p>k

∑
q1∈N

p−rq−r1

�r

∑
p>k

p−r

�r

∑
m≥0

∑
p∈[2mk,2m+1k)

2−mrk−r

�r

∑
m≥0

2−mrk−r
2mk

m log(k)
�r k

−r+1(log k)−1.

In the second case ∑
(ii) holds

q−r ≤
∑
p≤k

p−rap
∑
q1∈N

q−r1 �r
k

log k
k−r. �
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