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1 Introduction and heuristics

A par of positive integers p, p + 2 is called “twin prime pair” (or just “twin
primes”) if they are both prime numbers; for example, 3, 5 and 11, 13 are
twin prime pairs. A famous unsolved problem in number theory is that of
proving that there are infinitely many twin primes.

From probabilistic grounds alone we would expect that there are in-
ifinitely many: Suppose that we have a sequence of independent random
variables

Z1, ..., Zx,

where

Zi =

{

1, with probability 1/ logx;
0, with probability 1 − 1/ log x.

Think of these random variable as picking out prime numbers – when Zn is
1 we have n is prime, and if it is 0, then n is composite. Of course this is a
silly thing to say, because a number is either prime or it isn’t, and so there is
no probability at all. Nonetheless, this model is often indicative of roughly
what is true, and in our case we would have that n, n + 2 are both “prime”
with probability 1/ log2 x; so, we would expect there are about x/ log2 x twin
prime pairs.

One failing of our model is that it would also predict that there are about
x/ log2 x pairs n, n+1 that are prime, which is clearly false (only 2, 3 is such
a pair of primes). What goes awry in this example is “divisibility by 2”. We
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could add into our model all such divisibility constraints, but we will instead
look at the problem in a different way: First, define the polynomial

f(z) = z(z + 2),

and consider the sequence

f(1), f(2), ..., f(x).

It is not hard to see that the number of twin prime pairs in (
√

x, x] is the
number of integers n ≤ x such that f(n) is not divisible by any prime p ≤ √

x.
We note that p 6 |f(n) if and only if

f(n) = n(n + 2) 6≡ 0 (mod p)

For p = 2 this condition means that n 6≡ 0 (mod 2), but for all the other
primes p ≥ 3 we have that the condition is n 6≡ 0,−2 (mod p).

We can think of the problem of locating twin prime pairs in (
√

x, x] as
a sieve process: We eliminate those n that are 0 (mod 2), and then we
eliminate those that 0,−2 (mod 3), and so on up to 0,−2 (mod P ) where
P is the largest prime ≤ √

x. Given a prime p let

w(p) =

{

1, if p = 2;
2, if p ≥ 3.

If the primes acted “independently” with respect to the sieving process, then
we would expect that there are about

x
∏

p≤√
x

p prime

(

1 − w(p)

p

)

(1)

twin prime pairs n, n + 2 ≤ x, since each of these factors 1 − w(p)/p is the
proportion of integers that remain after the sieving process with the prime p
is applied.

It turns out that our guess as to the number of twin primes ≤ x given in
(1) is actually wrong – it is off by a certain constant factor. The reason is
that the primes do not really act independently with respect to sieving. We
have already seen this in class in regards to trying to count the number of
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primes in (
√

x, x] using a sieve: If the primes did act independently, then we
should expect that there are

∼ x
∏

p≤√
x

p prime

(

1 − 1

p

)

∼ 2e−γx

log x

primes in (
√

x, x], where γ is Euler’s constant, and is given by

γ = lim
x→∞

(

∑

1≤n≤x

1

n
− log x

)

.

Here we are using Mertens’s theorem, which says that

∏

p≤y

(

1 − 1

p

)

∼ e−γ

log y
.

So, in order to have a good heuristic for the number of twin prime pairs
≤ x we need to multiply our guess (1) by an appropriate “correction factor”.
What should such a correction factor be? Well, when we were sieving to find
primes the factor was

lim
x→∞

1

log x

∏

p≤√
x

p prime

(

1 − 1

p

)−1

∼ eγ/2.

However, when we sieve for when both n and n + 2 are prime, the factor
should be the square of that (basically, one correction factor for each of the
numbers n and n + 2), which is

lim
x→∞

1

log2 x

∏

p≤√
x

p prime

(

1 − 1

p

)−2

.

If we now multiply this by our guess (1), we get

∼ 2x

log2 x

∏

3≤p≤√
x

p prime

(

1 − 2

p

)

(

1 − 1

p

)2
=

2x

log2 x

∏

3≤p≤√
x

p prime

(

1 − 1

p2(1 − 1/p)2

)

=
2x

log2 x

∏

3≤p≤√
x

p prime

(

1 − 1

(p − 1)2

)

.
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Since this product over primes converges if we let x → ∞, we have the
following heuristic for the number of twin prime pairs ≤ x:

∼ 2x

log2 x

∏

p≥3
p prime

(

1 − 1

(p − 1)2

)

.

This heuristic was first worked out by Hardy and Littlewood, and is part of
a more general conjecture called the “Hardy-Littlewood Conjecture”.

2 Sums of reciprocals of twin primes

If the twin primes had the above counting function, then we would have that
∑

p,p+2 prime

1

p
converges, (2)

as can be seen via an integral test upon noting that
∫ ∞

2

dt

t log2 t
=

1

log 2
.

In fact, even if we had a much worse upper bound on the number of twin
primes, we would get that this sum of reciprocals converges; in particular,
an upper bound of something like

π2(x) <
x

(log x)(log log x)2
,

where π2(x) is the number of twin prime pairs ≤ x, would be enough to show
(2).

2.1 A simpleminded approach

A simple approach is to do sieving in such a way that you get the exact count
for the number of integers left once the sieve terminates: An obvious way to
do this is to let N be the product of primes 2, 3, ..., pk, where pk is the largest
prime such that 2 · 3 · · · pk ≤ x. 1 Then, we do the following

1Note here that, by the Prime Number Theorem,

pk ∼ log x.
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• Take all the numbers 1, 2, ..., N , and eliminate those n in the list for
which n(n + 2) is divisible by 2 – that is, we eliminate all those n that are
even.

• Then, taken the remaining numbers in the list, and remove all those n
such that n(n + 2) is divisible by 3 – that is, eliminate all those n that are
≡ 0,−2 (mod 3).

...

• Finally, remove all those n where pk|n(n + 2).

Whatever numbers that remain, they must include the set of twin primes
that lie in (

√
N, N ]; so, the number of integers that remain gives us an upper

bound on the number of twin primes in (
√

N, N ]. The question is: Just how
many numbers will be left after we perform this sieve ?

Well, the numbers that remain after the sieve has finished will be all those
n such that

n 6≡ 0 (mod 2)

6≡ 0,−2 (mod 3)

6≡ 0,−2 (mod 5)
...

6≡ 0,−2 (mod pk).

Since N is the product of all these primes we have by the Chinese Remainder
Theorem that are

N
∏

2≤p≤pk
p prime

(

1 − w(p)

p

)

, (3)

numbers that remain.
It is not difficult to prove that (upon taking logs and playing around with

series)
∏

p≤y
p prime

(

1 − 2

p

)

> κ1

∏

p≤y
p prime

(

1 − 1

p

)2

∼ κ1e
−2γ

log y
,
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for a certain constant κ1 > 0; and so, we deduce that the quantity in (3) is
at least

κ2N

(log log N)2
, for a certain κ2 > 0. (4)

So, even though we get the exact count of the number of integers that
remain after the sieve finishes, the upper bound we get is quite poor! In
fact, we can easily give a much stronger upper bound just by noting that
the number of twin primes in (

√
N, N ] is at most the number of primes in

this interval, and so by the Prime Number Theorem we would get the upper
bound of ∼ N/ log N – much better than (4).

Clearly, what goes awry in trying to give a good upper bound on the
number of twin primes using this method, is that we are not using that
many primes in our sieve – we are only using the primes up to about log x,
instead of those up to about

√
x.

2.2 How many primes do we need to sieve with?

We saw that if we could achieve the upper bound of

π2(x) <
x

(log x)(log log x)2
,

then we could prove that the sum of reciprocals of twin primes converges. It
is natural to consider just how many primes we would need to sieve with, if
we were to use the method in the previous subsection, in order to achieve
this bound. Well, we clearly would need to find y so that

∏

3≤p≤y
p prime

(

1 − 2

p

)

<
1

(log x)(log log x)2
.

Since the left-hand-side is at most c/ log2 y, we would need to solve for y in
the equation

log2 y = c−1(log x)(log log x)2.

So, we would need that

y = exp
(

(log log x)
√

c−1 log x
)

.
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In fact, it suffices to use

y = B = B(x) := exp
(

(log log x)
√

log x
)

.

This is far and away more primes than the log x we used in the simple
approach!

2.3 The Combinatorial Sieve

When we tried to give an upper bound on the number of integers left unsieved,
we got a terrible upper bound; and, if one plays around with the idea from the
previous subsection, one realizes that no simple modification of that idea will
give anything better. So, what do we do now? How to we incorporate more
primes into our sieve ? One answer is to do “intelligent inclusion-exclusion”,
in the form of what are called the Bonferroni inequalities. In order to set up
the discussion, first suppose that we have a sequence of finite sets S1, ..., Sk.
Then, as is well-known, we have the standard inclusion-exclusion formula

|S1 ∪ · · · ∪ Sk| =
k
∑

j=1

(−1)j+1
∑

1≤i1<i2<···<ij≤k

|Si1 ∩ · · · ∩ Sij |.

The Bonferroni inequalities tell us that we can get an approximation to the
size of this union if we truncate the sums at some point. Specifically, we have

Bonferroni Inequalities.

|S1 ∪ · · · ∪ Sk| ≥
∑

1≤j≤2r

(−1)j+1
∑

1≤i1<i2<···<ij≤k

|Si1 ∩ · · · ∩ Sij |; and,

|S1 ∪ · · · ∪ Sk| ≤
∑

1≤j≤2r−1

(−1)j+1
∑

1≤i1<i2<···<ij≤k

|Si1 ∩ · · · ∩ Sij |.

The proofs of these inequalities amount to considering the contribution
of a single element in S1 ∪ · · ·∪Sk to both sides. Every element in the union
has contribution 1 to the left-hand-side, and with some work (involving some
basic binomial coefficient identities, which I worked out in class) one can show
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that it has contribution ≤ 1 to the right-hand-side of the first inequality, and
≥ 1 to the second inequality. Hence, we get the bounds as claimed.

In our case, we will suppose that p1, ..., pk ≥ 3 are all the primes ≤ B,
and then we define

Si := {n ≤ x : pi|n(n + 2)}.

Note that we are throwing away the prime 2 – the reason is to make the
exposition a little easier to read (we can throw away any finite set of primes
from our sieve, and it will only affect our upper bound by a constant factor).

In order to apply the Bonferroni inequalities we will need to have decent
estimates for the sizes of the various set intersections: We have that

n ∈ Si1∩· · ·∩Sit ⇐⇒ n ≤ x, and for every j = 1, ..., t, n ≡ 0,−2 (mod pij ).
(5)

To count this right-most quantity, break [1, x] up into consecutive intervals
of width ∆ = pi1 · · · pit, with possibly an incomplete interval at the end if ∆
does not divide x.2 The intergers in each of the “complete intervals” form a
complete system of residue classes modulo ∆; and, in each of these complete
intervals we have that there are exactly 2t = τ(∆) (recall that τ(n) is the
number of divisors of n – in the case where n is a product of t distinct primes
we have τ(n) = 2t) integers n satisfying the congruences in (5). The single
“incomplete interval” contains at most τ(∆) integers n satisfying (5). Since
there are bx/∆c complete intervals, and either 0 or 1 incomplete intervals,
we get that

|Si1 ∩ · · · ∩ Sit| = τ(∆)(bx/∆c + O(1)) =
xτ(∆)

∆
+ O(τ(∆)).

Now, which of the Bonferroni inequalities do we use? Well, an upper
bound for the number of twin prime pairs n, n + 2 ≤ x (well, up to an error
O(B) because our sieve also eliminates twin primes pairs ≤ B) would be the
size of complement of the union S1 ∪ · · ·Sk within [1, x], because this union
gives all those n that we want to sieve out. In other words, we want an upper
bound for

x − |S1 ∪ · · · ∪ Sk|, (6)

2Actually, if ∆ > x, then the entire interval [1, x] will be an “incomplete interval”.
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which amounts to a lower bound for |S1∪· · ·Sk|. So, we use the first Bonfer-
roni inequality. Before we do that, let us note something first, which makes
the identity easier to work with: We have that

(−1)t
∑

1≤i1<···<it≤k

|Si1 ∩ · · · ∩ Sit| =
∑

d|p1···pk
ω(d)=t

µ(d)

(

xτ(d)

d
+ O(τ(d))

)

.

Reall here that “ω(d) = t” means that d has exactly t primes factors; and, in
the case d square-free (which is true for all the d in the above sum), having
t prime factors, we have that (−1)t = µ(d).

So, we have that

π2(x) − π2(B) ≤
∑

d|p1···pk
ω(d)≤2r

µ(d)

(

xτ(d)

d
+ O(τ(d))

)

. (7)

Note that the term d = 1 corresponds to the term x in (6) – how convenient!
What value of r should we take to get good bounds? Well, this can be

worked out precisely; however, just to make a long story short, let us just
take 2r to be the largest even integer satisfying

2r ≤
√

log x

(log log x)
.

When we do this, the error incurred by summing the O(τ(d)) term above
over all d|p1 · · · pk with ω(d) ≤ 2r, will be at most

22r
∑

1≤j≤2r

(

k

j

)

Since k is so much larger than 2r, the term j = 2r will dominate all the other
terms in the binomial coefficient sum; and so, we get that for x sufficiently
large, this error is at most a constant multiple of

22r k2r

(2r)!
< 22r

(

ek

2r

)2r

=

(

ek

r

)2r

< x(e/r)2r. (8)

Here we have used the fact that

m! > (m/e)m, for m ≥ 1,
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as well as the fact that
k2r < x.

It is easy to see that the right-most term in (8) is o(x/(log x)(log log x)2); in
fact, it is much much smaller, but all we need is o(x/(log x)(log log x)2). So,
we have

π2(x) ≤ x
∑

d|p1···pk
ω(d)≤2r

µ(d)τ(d)

d
+ o

(

x

(log x)(log log x)2

)

.

We next want to extend this sum from those d with ω(d) ≤ 2r to ω(d) ≥ 0.
In order to do this, we need an upper bound for the contribution of those d
with ω(d) ≥ 2r + 1 to this complete sum over all d: First, observe that

∑

d|p1···pk
ω(d)=j

τ(d)

d
≤ 1

j!







∑

p≤B
p prime

2

p







j

. (9)

This follows since on expanding out this jth power we get a sum of terms

· · · +
2j

pi1 · · · pij

+ · · ·

and, for each set of primes {pi1, ..., pij} we get that this product occurs in
the jth power expansion j! times; so, upon dividing by j! we get our upper
bound. The reason that we get an upper bound, and not an equality, is that
this jth power will also have some terms involving the square of primes (and
even higher powers) p ≤ B.

Now, if j ≥ 2r + 1, then our upper bound for (9) has size at most

(

e log log x√
log x − 2

)j

(2 log log B + O(1))j =

(

(log log x)2(e + o(1))√
log x

)j

.

(The reason for the −2 in the denominator here is that 2r ≤
√

log x/ log log x,
and so is potentially 2 less than this upper bound.) Summing this over all
j ≥ 2r + 1 we get a very small upper bound; in particular, it is certainly at
most o(1/(log x)(log log x)2) by a mile!
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What this means is that

∑

d|p1···pk

µ(d)τ(d)

d
=

∑

d|p1···pk
ω(d)≤2r

µ(d)τ(d)

d
+ o

(

1

(log x)(log log x)2

)

;

and so, we deduce that

π2(x) ≤ x
∑

d|p1···pk

µ(d)τ(d)

d
+ o

(

x

(log x)(log log x)2

)

.

This sum over the divisors d of p1 · · ·pk has a very nice, simple form: It
is just the product of (1 − 2/p) over all 3 ≤ p ≤ B, which gives

π2(x) ≤ x
∏

3≤p≤B
p prime

(

1 − 2

p

)

+ o

(

x

(log x)(log log x)2

)

.

By taking the logarithm of this product over primes, and using some basic
estimates for the error in the Taylor expansion of log(1−t), and then exponen-
tiating, it is not difficult to show that the product is ∼ c/(log x)(log log x)2;
and so,

π2(x) ≤ (c + o(1))x

(log x)(log log x)2
,

which is just what we needed in order to prove that the sum of reciprocals
of twin primes converges.

2.4 What more can we prove?

As you should be able to tell from the argument in the previous section, we
could give much better upper bounds on π2(x) using the Bonferroni approach,
if we just sieve by more primes. What should clue you in to the fact that
we have not reached the limit of this method is the fact that the error terms
we got were very very small compared to the main term. For example, take
the error O(τ(d)), summed over all d with ω(d) ≤ 2r, that occurs in (7). In
(8) we got that it had size at most x(e/r)2r, and all we needed that it was
o(x/(log x)(log log x)2); in fact, we have that

x(e/r)2r = x exp(−O(
√

log x)),
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using the fact that 2r ∼
√

log x/ log log x.
Thus, it should not be surprising that by estimating things more precisely,

and by working with more primes, this “ Bonferroni method” can be used to
prove that

π2(x) <
cx log log x

(log x)2
.

Although this upper bound is much better than what we had before, it is
still not of the form cx/(log x)2 as we conjectured earlier. Well, it turns out
that yet another idea is needed, in addition to the Bonferroni inequalities, 3

if we are to get an upper bound of this general shape cx/(log x)2. Roughly,
this extra idea is to derive Bonferroni-type inequalities, where instead of
truncating the divisors d at ω(d) ≤ 2r or 2r− 1, we truncate them according
to a more elaborate rule (which roughly is that our d have at most a certain
number of prime factors taken from certain sequences of intervals). If we do
this, after the dust has settled we obtain the following theorem:

The Combinatorial Sieve. For every K ≥ 1, there exist constants δ ∈
(0, 1], κ1 > 0, and κ2 > 0 such that the following holds for all x sufficiently
large: For each prime p ≤ xδ, suppose that we distinguish w(p) residue
classes, where

0 ≤ w(p) ≤ min(p − 1, K),

which are residue classes that we want to “sieve out by”. Then, let S be the
set that results after we remove all the integers n ∈ [1, x] that happen to lie
in one of these distinguished residue classes for at least one of these primes
p ≤ xδ. Then,

|S| < κ1x
∏

p≤xδ

p prime

(

1 − w(p)

p

)

;

and

|S| > κ2x
∏

p≤xδ

p prime

(

1 − w(p)

p

)

.

3Well, there are other, non-combinatorial sieve methods that do not use Bonferroni
inequalities, such as Selberg’s sieve or the Large Sieve, which we may talk about later on
in the semester.
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This parameter K is called the “sifting dimension” for the sieve; actually,
I have only stated a corollary of the combinatorial sieve – technically, the
sifting dimension is

1

log log x

∑

p≤xδ

p prime

w(p)

p
.

Just to see what we can use this theorem to prove, suppose we want to
give an upper bound for π2(x). Then, we take K = 2, and then for primes
p ≤ xδ we have, as before,

w(p) =

{

1, if p = 2;
2, if p ≥ 3.

The value of δ = δ(K) = δ(2) that the above theorem uses will be somewhat
smaller than 1/2, which means that the theorem only will give us an upper
bound on π2(x) – the lower bound it gives will only be the number of integers
n ≤ x such that n(n + 2) is not divisible by any prime p ≤ xδ, which is a
larger set than just the twin primes.

At any rate, if we compute the upper bound that the theorem gives, we
find that it is

≤ κ1x

(

1 − 1

2

)

∏

3≤p≤xδ

p prime

(

1 − 2

p

)

∼ Cx

log2 x
,

for a certain C > 0.

Another, vastly more interesting consequence of the combinatorial sieve
is the following: Suppose that f(x) ∈ Z[x] is some polynomial that does not
have any fixed prime factor; that is, suppose that there is no prime p such
that p|f(n) for all integers n. Then, we have that there exists some integer r
that depends on f (in fact, it can be bounded from above purely in terms of
the degree of f), such that for infinitely many integers n, f(n) has at most r
prime factors. Furthermore, we can give good lower bounds (off by at most a
constant factor from the conjectured true lower bound) for this count. There
are other, similar applications of the combinatorial sieve. I will save some of
these applications for homework problems...
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