Math 8100 Assignment 8
 Basic Function Spaces

Due date: Thursday the 2nd of December 2021

1. Prove the following basic properties of $L^{\infty}=L^{\infty}(X)$, where X is a measurable subset of \mathbb{R}^{n} :
(a) $\|\cdot\|_{\infty}$ is a norm on L^{∞} and when equipped with this norm L^{∞} is a Banach space.
(b) $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ iff there exists $E \in \mathbb{R}^{n}$ such that $m\left(E^{c}\right)=0$ and $f_{n} \rightarrow f$ uniformly on E.
(c) Simple functions are dense in L^{∞}, but continuous functions with compact support are not. Recall that if $X \subseteq \mathbb{R}^{n}$ is measurable and f is a measurable function on X, then we define

$$
\|f\|_{\infty}=\inf \{a \geq 0: m(\{x \in X:|f(x)|>a\})=0\}
$$

with the convention that $\inf \emptyset=\infty$, and

$$
L^{\infty}=L^{\infty}(X)=\left\{f: X \rightarrow \mathbb{C} \text { measuarable }:\|f\|_{\infty}<\infty\right\}
$$

with the usual convention that two functions that are equal a.e. define the same element of L^{∞}. Thus $f \in L^{\infty}$ if and only if there is a bounded function g such that $f=g$ almost everywhere; we can take $g=f \chi_{E}$ where $E=\left\{x:|f(x)| \leq\|f\|_{\infty}\right\}$.
2. Let $X \subseteq \mathbb{R}^{n}$ be measurable.
(a) i. Prove that if $m(X)<\infty$, then

$$
\begin{equation*}
L^{\infty}(X) \subset L^{2}(X) \subset L^{1}(X) \tag{1}
\end{equation*}
$$

with strict inclusion in each case, and that for any measurable $f: X \rightarrow \mathbb{C}$ one in fact has

$$
\|f\|_{L^{1}(X)} \leq m(X)^{1 / 2}\|f\|_{L^{2}(X)} \leq m(X)\|f\|_{L^{\infty}(X)}
$$

ii. Give examples to show that no such result of the form (1) can hold if one drops the assumption that $m(x)<\infty$. Prove, furthermore, that if $L^{2}(X) \subseteq L^{1}(X)$, then $m(X)<\infty$.
(b) Prove that

$$
\underbrace{L^{1}(X) \cap L^{\infty}(X) \subset L^{2}(X)}_{(\star)} \subset L^{1}(X)+L^{\infty}(X)
$$

and that in addition to (\star) one in fact has

$$
\|f\|_{L^{2}(X)} \leq\|f\|_{L^{1}(X)}^{1 / 2}\|f\|_{L^{\infty}(X)}^{1 / 2}
$$

for any measurable function $f: X \rightarrow \mathbb{C}$.
3. Prove that

$$
\ell^{1}(\mathbb{Z}) \subset \ell^{2}(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z})
$$

with strict inclusion in each case, and that for any sequence $a=\left\{a_{j}\right\}_{j \in \mathbb{Z}}$ of complex numbers one in fact has

$$
\|a\|_{\ell^{\infty}(\mathbb{Z})} \leq\|a\|_{\ell^{2}(\mathbb{Z})} \leq\|a\|_{\ell^{1}(\mathbb{Z})}
$$

Recall that for $p=1,2, \infty$ we define

$$
\ell^{p}(\mathbb{Z})=\left\{a=\left\{a_{j}\right\}_{j \in \mathbb{Z}} \subseteq \mathbb{C}:\|a\|_{\ell^{p}(\mathbb{Z})}<\infty\right\}
$$

where

$$
\|a\|_{\ell^{1}(\mathbb{Z})}=\sum_{j=-\infty}^{\infty}\left|a_{j}\right|, \quad\|a\|_{\ell^{2}(\mathbb{Z})}=\left(\sum_{j=-\infty}^{\infty}\left|a_{j}\right|^{2}\right)^{1 / 2}, \text { and }\|a\|_{\ell^{\infty}(\mathbb{Z})}=\sup _{j}\left|a_{j}\right| .
$$

4. Let $C([0,1])$ denote the space of all continuous real-valued functions on $[0,1]$.
(a) Prove that $C([0,1])$ is complete under the uniform norm $\|f\|_{u}:=\sup _{x \in[0,1]}|f(x)|$.
(b) Prove that $C([0,1])$ is not complete under the L^{1}-norm $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$
5. Let H be a Hilbert space with orthonormal basis $\left\{u_{n}\right\}_{n=1}^{\infty}$.
(a) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers. Prove that

$$
\sum_{n=1}^{\infty} a_{n} u_{n} \text { converges in } H \Longleftrightarrow \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty
$$

and moreover that if $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty$, then $\left\|\sum_{n=1}^{\infty} a_{n} u_{n}\right\|=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}$.
(b) i. Is there a continuous linear functional L on H such that $L\left(u_{n}\right)=n^{-1}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
ii. Is there a continuous linear functional L on H such that $L\left(u_{n}\right)=n^{-1 / 2}$ for all $n \in \mathbb{N}$?

If L exists, find its norm.
6. For each $1 \leq p \leq \infty$, define $\Lambda_{p}: L^{p}([0,1]) \rightarrow \mathbb{R}$ by

$$
\Lambda_{p}(f)=\int_{0}^{1} x^{2} f(x) d x
$$

Explain why Λ_{p} is a continuous linear functional and compute its norm (in terms of p).

Extra Practice Problems
 Not to be handed in with the assignment

1. Let f and g be two non-negative Lebesgue measurable functions on $[0, \infty)$. Suppose that

$$
A:=\int_{0}^{\infty} f(y) y^{-1 / 2} d y<\infty \quad \text { and } \quad B:=\left(\int_{0}^{\infty}|g(y)|^{2} d y\right)^{1 / 2}<\infty
$$

Prove that

$$
\int_{0}^{\infty}\left(\int_{0}^{x} f(y) d y\right) \frac{g(x)}{x} d x \leq A B
$$

2. Let $\left\{f_{k}\right\}$ be any sequence of functions in $L^{2}([0,1])$ satisfying $\left\|f_{k}\right\|_{2} \leq 1$ for all $k \in \mathbb{N}$.
(a) i. Prove that if $f_{k} \rightarrow f$ either a.e. on $[0,1]$ or in $L^{1}([0,1])$, then $f \in L^{2}([0,1])$ with $\|f\|_{2} \leq 1$.
ii. Do either of the above hypotheses guarantee that $f_{k} \rightarrow f$ in $L^{2}([0,1])$?
(b) Prove that if $f_{k} \rightarrow f$ a.e. on $[0,1]$, then this in fact implies that $f_{k} \rightarrow f$ in $L^{1}([0,1])$.
3. Let $1 \leq p \leq \infty$. Prove that if $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a sequence of functions in $L^{p}\left(\mathbb{R}^{n}\right)$ with the property that

$$
\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p}<\infty
$$

then $\sum f_{k}$ converges almost everywhere to an $L^{p}\left(\mathbb{R}^{n}\right)$ function with

$$
\left\|\sum_{k=1}^{\infty} f_{k}\right\|_{p} \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p}
$$

