Math 8100 Assignment 7
 Hilbert Spaces

Due date: Thursday 18th of November 2021

1. (a) Prove that $\ell^{2}(\mathbb{N})$ is complete.

Recall that $\ell^{2}(\mathbb{N}):=\left\{x=\left\{x_{j}\right\}_{j=1}^{\infty}:\|x\|_{\ell^{2}}<\infty\right\}$, where $\|x\|_{\ell^{2}}:=\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{2}\right)^{1 / 2}$.
(b) Let H be a Hilbert space. Prove the so-called polarization identity, namely that for any $x, y \in H$,

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right)
$$

and conclude that any invertible linear map from H to $\ell^{2}(\mathbb{N})$ is unitary if and only if it is isometric.
Recall that if H_{1} and H_{2} are Hilbert spaces with inner products $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$, then a mapping $U: H_{1} \rightarrow H_{2}$ is said to be unitary if it is an invertible linear map that preserves inner products, namely $\langle U x, U y\rangle_{2}=\langle x, y\rangle_{1}$, and an isometry if it preserves"lengths", namely $\|U x\|_{2}=\|x\|_{1}$.
2. Let E be a subset of a Hilbert space H.
(a) Show that $E^{\perp}:=\{x \in H:\langle x, y\rangle=0$ for all $y \in E\}$ is a closed subspace of H.
(b) Show that $\left(E^{\perp}\right)^{\perp}$ is the smallest closed subspace of H that contains E.
3. In $L^{2}([0,1])$ let $e_{0}(x)=1, e_{1}(x)=\sqrt{3}(2 x-1)$ for all $x \in(0,1)$.
(a) Show that e_{0}, e_{1} is an orthonormal system in $L^{2}(0,1)$.
(b) Show that the polynomial of degree 1 which is closest with respect to the norm of $L^{2}(0,1)$ to the function $f(x)=x^{2}$ is given by $g(x)=x-1 / 6$. What is $\|f-g\|_{2}$?
4. (a) Verify that the following systems are orthogonal in $L^{2}([0,1])$:
i. $\{1 / \sqrt{2}, \cos (2 \pi x), \sin (2 \pi x), \ldots, \cos (2 \pi k x), \sin (2 \pi k x), \ldots\}$
ii. $\left\{e^{2 \pi i k x}\right\}_{k=-\infty}^{\infty}$
(b) Let $f \in L^{1}([0,1])$.
i. Show that for any $\epsilon>0$ we can write $f=g+h$, where $g \in L^{2}$ and $\|h\|_{1}<\epsilon$.
ii. Use this decomposition of f to prove the so-called Riemann-Lebesgue lemma:

$$
\lim _{k \rightarrow \infty} \int_{0}^{1} f(x) \cos (2 \pi k x) d x=\lim _{k \rightarrow \infty} \int_{0}^{1} f(x) \sin (2 \pi k x) d x=0
$$

5. (a) The first three Legendre polynomials are

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\left(3 x^{2}-1\right) / 2 .
$$

Show that the orthonormal system in $L^{2}([-1,1])$ obtained by applying the Gram-Schmidt process to $1, x, x^{2}$ are scalar multiples of these.
(b) Compute

$$
\min _{a, b, c} \int_{-1}^{1}\left|x^{3}-a-b x-c x^{2}\right|^{2} d x
$$

(c) Find

$$
\max \int_{-1}^{1} x^{3} g(x) d x
$$

where g is subject to the restrictions

$$
\int_{-1}^{1} g(x) d x=\int_{-1}^{1} x g(x) d x=\int_{-1}^{1} x^{2} g(x) d x=0 ; \quad \int_{-1}^{1}|g(x)|^{2} d x=1 .
$$

6. Let

$$
\mathcal{C}=\left\{f \in L^{2}([0,1]): \int_{0}^{1} f(x) d x=1 \text { and } \int_{0}^{1} x f(x) d x=2\right\}
$$

(a) Let $g(x)=18 x^{2}-5$. Show that $g \in \mathcal{C}$ and that

$$
\mathcal{C}=g+\mathcal{S}^{\perp}
$$

where \mathcal{S}^{\perp} denotes the orthogonal complement of $\mathcal{S}=\operatorname{Span}(\{1, x\})$.
(b) Find the function $f_{0} \in \mathcal{C}$ for which

$$
\int_{0}^{1}\left|f_{0}(x)\right|^{2} d x=\inf _{f \in \mathcal{C}} \int_{0}^{1}|f(x)|^{2} d x .
$$

Extra Challenge Problems

Not to be handed in with the assignment

1. Prove that every closed convex set K in a Hilbert space has a unique element of minimal norm.
2. The Mean Ergodic Theorem: Let U be a unitary operator on a Hilbert space H.

Prove that if $M=\{x: U x=x\}$ and $S_{N}=\frac{1}{N} \sum_{n=0}^{N-1} U^{n}$, then $\lim _{N \rightarrow \infty}\left\|S_{N} x-P x\right\|=0$ for all $x \in H$, where $P x$ denotes the orthogonal projection of x onto M.

