Math 8100 Assignment 5
 Repeated Integration

Due date: Tuesday the 26th of October 2021

1. Let $f \in L^{1}([0,1])$, and for each $x \in[0,1]$ define

$$
g(x)=\int_{x}^{1} \frac{f(t)}{t} d t
$$

Show that $g \in L^{1}([0,1])$ and that

$$
\int_{0}^{1} g(x) d x=\int_{0}^{1} f(x) d x
$$

2. Carefully prove that if we define

$$
f(x, y):= \begin{cases}\frac{x^{1 / 3}}{(1+x y)^{3 / 2}} & \text { if } 0 \leq x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

for each $(x, y) \in \mathbb{R}^{2}$, then f defines a function in $L^{1}\left(\mathbb{R}^{2}\right)$.
3. Prove that if $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\int_{\mathbb{R}^{n}}|f(x)| d x=\int_{0}^{\infty} m\left(\left\{x \in \mathbb{R}^{n}:|f(x)|>t\right\}\right) d t
$$

4. Let $A, B \subseteq \mathbb{R}^{n}$ be bounded measurable sets with positive Lebesgue measure. For each $t \in \mathbb{R}^{n}$ define the function

$$
g(t)=m(A \cap(t-B))
$$

where $t-B=\{t-b: b \in B\}$.
(a) Prove that g is a continuous function and

$$
\int_{\mathbb{R}^{n}} g(t) d t=m(A) m(B)
$$

(b) Conclude that the sumset

$$
A+B=\{a+b: a \in A \text { and } b \in B\}
$$

contains a non-empty open subset of \mathbb{R}^{n}.
5. Let $f, g \in L^{1}([0,1])$ and for each $0 \leq x \leq 1$ define

$$
F(x):=\int_{0}^{x} f(y) d y \quad \text { and } \quad G(x):=\int_{0}^{x} g(y) d y
$$

Prove that

$$
\int_{0}^{1} F(x) g(x) d x=F(1) G(1)-\int_{0}^{1} f(x) G(x) d x
$$

6. Suppose that F is a closed subset of \mathbb{R} whose complement has finite measure. Let $\delta(x)$ denote the distance from x to F, namely

$$
\delta(x)=d(x, F)=\inf \{|x-y|: y \in F\}
$$

and

$$
I_{F}(x)=\int_{-\infty}^{\infty} \frac{\delta(y)}{|x-y|^{2}} d y
$$

(a) Prove that δ is continuous, by showing that it satisfies the Lipschitz condition $|\delta(x)-\delta(y)| \leq|x-y|$.
(b) Show that $I_{F}(x)=\infty$ if $x \notin F$.
(c) Show that $I_{F}(x)<\infty$ for a.e. $x \in F$, by showing that $\int_{F} I_{F}(x) d x<\infty$.
7. Let $f \in L^{1}(\mathbb{R})$. For any $h>0$ we define

$$
A_{h}(f)(x):=\frac{1}{2 h} \int_{x-h}^{x+h} f(y) d y
$$

(a) Prove that for all $h>0$,

$$
\int_{\mathbb{R}}\left|A_{h}(f)(x)\right| d x \leq \int_{\mathbb{R}}|f(x)| d x
$$

(b) Prove that

$$
\lim _{h \rightarrow 0^{+}} \int_{\mathbb{R}}\left|A_{h}(f)(x)-f(x)\right| d x=0
$$

One can in fact show that $\lim _{h \rightarrow 0^{+}} A_{h}(f)=f$ almost everywhere. This result is actually equivalent to the Lebesgue Density Theorem in \mathbb{R} and we will establish this later in the course.

Extra Challenge Problems

Not to be handed in with the assignment

1. Prove that if $\left\{a_{j k}\right\}_{(j, k) \in \mathbb{N} \times \mathbb{N}}$ is a "double sequence" with $a_{j k} \geq 0$ for all $(j, k) \in \mathbb{N} \times \mathbb{N}$, then

$$
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{j k}=\sup \left\{\sum_{(j, k) \in B} a_{j k}: B \text { is a finite subset of } \mathbb{N} \times \mathbb{N}\right\}
$$

and deduce from this that

$$
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{j k}=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{j k}
$$

This conclusion holds more generally provided $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left|a_{j k}\right|<\infty$, see Theorem 8.3 in "Baby Rudin".
2. (a) Prove that

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\infty
$$

(b) By considering the iterated integral

$$
\int_{0}^{\infty}\left(\int_{0}^{\infty} x e^{-x y}(1-\cos y) d y\right) d x
$$

show (with justification) that

$$
\lim _{A \rightarrow \infty} \int_{0}^{A} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

