Math 8100 Assignment 5 Repeated Integration

Due date: Tuesday the 26th of October 2021

1. Let $f \in L^1([0,1])$, and for each $x \in [0,1]$ define

$$g(x) = \int_{x}^{1} \frac{f(t)}{t} dt.$$

Show that $g \in L^1([0,1])$ and that

$$\int_0^1 g(x) \, dx = \int_0^1 f(x) \, dx.$$

2. Carefully prove that if we define

$$f(x,y) := \begin{cases} \frac{x^{1/3}}{(1+xy)^{3/2}} & \text{if } 0 \le x \le y\\ 0 & \text{otherwise} \end{cases}$$

for each $(x,y) \in \mathbb{R}^2$, then f defines a function in $L^1(\mathbb{R}^2)$.

3. Prove that if $f \in L^1(\mathbb{R}^n)$, then

$$\int_{\mathbb{R}^n} |f(x)| \, dx = \int_0^\infty m(\{x \in \mathbb{R}^n : |f(x)| > t\}) \, dt.$$

4. Let $A, B \subseteq \mathbb{R}^n$ be bounded measurable sets with positive Lebesgue measure. For each $t \in \mathbb{R}^n$ define the function

$$g(t) = m \left(A \cap (t - B) \right)$$

where $t - B = \{t - b : b \in B\}.$

(a) Prove that g is a continuous function and

$$\int_{\mathbb{R}^n} g(t) \, dt = m(A) \, m(B).$$

(b) Conclude that the sumset

$$A + B = \{a + b : a \in A \text{ and } b \in B\}$$

contains a non-empty open subset of \mathbb{R}^n .

5. Let $f, g \in L^1([0,1])$ and for each $0 \le x \le 1$ define

$$F(x) := \int_0^x f(y) \, dy$$
 and $G(x) := \int_0^x g(y) \, dy$.

Prove that

$$\int_0^1 F(x)g(x) \, dx = F(1)G(1) - \int_0^1 f(x)G(x) \, dx.$$

1

6. Suppose that F is a closed subset of \mathbb{R} whose complement has finite measure. Let $\delta(x)$ denote the distance from x to F, namely

$$\delta(x)=d(x,F)=\inf\{|x-y|\,:\,y\in F\}$$

and

$$I_F(x) = \int_{-\infty}^{\infty} \frac{\delta(y)}{|x - y|^2} \, dy.$$

- (a) Prove that δ is continuous, by showing that it satisfies the Lipschitz condition $|\delta(x) \delta(y)| \le |x y|$.
- (b) Show that $I_F(x) = \infty$ if $x \notin F$.
- (c) Show that $I_F(x) < \infty$ for a.e. $x \in F$, by showing that $\int_F I_F(x) dx < \infty$.
- 7. Let $f \in L^1(\mathbb{R})$. For any h > 0 we define

$$A_h(f)(x) := \frac{1}{2h} \int_{x-h}^{x+h} f(y) \, dy$$

(a) Prove that for all h > 0,

$$\int_{\mathbb{R}} |A_h(f)(x)| \, dx \le \int_{\mathbb{R}} |f(x)| \, dx.$$

(b) Prove that

$$\lim_{h \to 0^+} \int_{\mathbb{R}} |A_h(f)(x) - f(x)| \, dx = 0.$$

One can in fact show that $\lim_{h\to 0^+} A_h(f) = f$ almost everywhere. This result is actually equivalent to the Lebesgue Density Theorem in \mathbb{R} and we will establish this later in the course.

Extra Challenge Problems

Not to be handed in with the assignment

1. Prove that if $\{a_{jk}\}_{(j,k)\in\mathbb{N}\times\mathbb{N}}$ is a "double sequence" with $a_{jk}\geq 0$ for all $(j,k)\in\mathbb{N}\times\mathbb{N}$, then

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} = \sup \left\{ \sum_{(j,k) \in B} a_{jk} : B \text{ is a finite subset of } \mathbb{N} \times \mathbb{N} \right\}$$

and deduce from this that

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{jk}.$$

This conclusion holds more generally provided $\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}|a_{jk}|<\infty$, see Theorem 8.3 in "Baby Rudin".

2. (a) Prove that

$$\int_0^\infty \left| \frac{\sin x}{x} \right| \, dx = \infty.$$

(b) By considering the iterated integral

$$\int_0^\infty \left(\int_0^\infty x e^{-xy} (1 - \cos y) \, dy \right) \, dx$$

show (with justification) that

$$\lim_{A \to \infty} \int_0^A \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$