Math 8100 Assignment 1
 Preliminaries

Due date: Thursday the 2nd of September 2021

1. The Cantor set \mathcal{C} is the set of all $x \in[0,1]$ that have a ternary expansion $x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$ with $a_{k} \neq 1$ for all k. Thus \mathcal{C} is obtained from $[0,1]$ by removing the open middle third $\left(\frac{1}{3}, \frac{2}{3}\right)$, then removing the open middle thirds $\left(\frac{1}{9}, \frac{2}{9}\right)$ and $\left(\frac{7}{9}, \frac{8}{9}\right)$ of the two remaining intervals, and so forth.
(a) Find a real number x belonging to the Cantor set which is not the endpoint of one of the intervals used in its construction.
(b) Prove that \mathcal{C} is both nowhere dense (and hence meager) and has measure zero.
(c) Prove that \mathcal{C} is uncountable by showing that the function $f(x)=\sum_{k=1}^{\infty} b_{k} 2^{-k}$ where $b_{k}=a_{k} / 2$, maps \mathcal{C} onto $[0,1]$.
2. A set $A \subseteq \mathbb{R}^{n}$ is called an F_{σ} set if it can be written as the countable union of closed subsets of \mathbb{R}^{n}. A set $B \subseteq \mathbb{R}^{n}$ is called a G_{δ} set if it can be written as the countable intersection of open subsets of \mathbb{R}^{n}.
(a) Argue that a set is a G_{δ} set if and only if its complement is an F_{σ} set.
(b) Show that every closed set is a G_{δ} set and every open set is an F_{σ} set.

Hint: One approach is to prove that every open subset of \mathbb{R}^{n} can be written as a countable union of closed cubes with disjoint interiors. This approach is however very specific to open sets in \mathbb{R}^{n}.
(c) Give an example of an F_{σ} set which is not a G_{δ} set and a set which is neither an F_{σ} nor a G_{δ} set.
3. (a) Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be any enumeration of all the rationals in $[0,1]$ and define $f:[0,1] \rightarrow \mathbb{R}$ by setting

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } x=r_{n} \\ 0 & \text { if } x \in[0,1] \backslash \mathbb{Q}\end{cases}
$$

Prove that $\lim _{x \rightarrow c} f(x)=0$ for every $c \in[0,1]$ and conclude that set of all points at which f is discontinuous is precisely $[0,1] \cap \mathbb{Q}$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bounded.
i. Recall that we defined the oscillation of f at x to be

$$
\omega_{f}(x):=\lim _{\delta \rightarrow 0^{+}} \sup _{y, z \in B_{\delta}(x)}|f(y)-f(z)| .
$$

Briefly explain why this is a well defined notion and prove that

$$
f \text { is continuous at } x \quad \Longleftrightarrow \quad \omega_{f}(x)=0 .
$$

ii. Prove that for every $\varepsilon>0$ the set $A_{\varepsilon}=\left\{x \in \mathbb{R}: \omega_{f}(x) \geq \varepsilon\right\}$ is closed and deduce from this that the set of all points at which f is discontinuous is an F_{σ} set.
4. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be any enumeration of a given countable set $X \subseteq \mathbb{R}$. For each $n \in \mathbb{N}$ define

$$
f_{n}(x)=\left\{\begin{array}{l}
1 \text { if } x>x_{n} \\
0 \text { if } x \leq x_{n}
\end{array}\right.
$$

Prove that

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} f_{n}(x)
$$

defines an increasing function f on \mathbb{R} that is continuous on $\mathbb{R} \backslash X$.
5. Let $C([0,1])$ denote the collection of all real-valued continuous functions with domain $[0,1]$.
(a) Show that $d_{\infty}(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|$ defines a metric on $C([0,1])$ and that with the "uniform" metric $C([0,1])$ is in fact a complete metric space.
(b) Prove that the unit ball $\left\{f \in C([0,1]): d_{\infty}(f, 0) \leq 1\right\}$ is closed and bounded, but not compact.
(c) ${ }^{* *}$ Challenge: Can you show that $C([0,1])$ with the metric d_{∞} is not totally bounded.

A set is totally bounded if, for every $\varepsilon>0$, it can be covered by finitely many balls of radius ε.
6. Let

$$
g(x)=\sum_{n=0}^{\infty} \frac{1}{1+n^{2} x}
$$

(a) Show that the series defining g does not converge uniformly on $(0, \infty)$, but none the less still defines a continuous function on $(0, \infty)$.
Hint for the first part: Show that if $\sum_{n=0}^{\infty} g_{n}(x)$ converges uniformly on a set X, then the sequence of functions $\left\{g_{n}\right\}$ must converge uniformly to 0 on X.
(b) Is g differentiable on $(0, \infty)$? If so, is the derivative function g^{\prime} continuous on $(0, \infty)$?
7. Let $h_{n}(x)=\frac{x}{(1+x)^{n+1}}$.
(a) Prove that h_{n} converges uniformly to 0 on $[0, \infty)$.
(b) i. Verify that

$$
\sum_{n=0}^{\infty} h_{n}(x)=\left\{\begin{array}{l}
1 \text { if } x>0 \\
0 \text { if } x=0
\end{array}\right.
$$

ii. Does $\sum_{n=0}^{\infty} h_{n}$ converge uniformly on $[0, \infty)$?
(c) Prove that $\sum_{n=0}^{\infty} h_{n}$ converges uniformly on $[a, \infty)$ for any $a>0$.

Extra Challenge Problems
 Not to be handed in with the assignment

1. Given an arbitrary F_{σ} set V, can you produce a function whose discontinuities lie precisely in V ?

Hint: First try to do this for an arbitrary closed set.
2. (Baire Category Theorem) Prove that if X is a non-empty complete metric space, then X cannot be written as a countable union of nowhere dense sets.
Hint: Modify the proof given in class of the special case $X=\mathbb{R}$ replacing the use of the nested interval property with the following fact (which you should prove):

If $F_{1} \supseteq F_{2} \supseteq \cdots$ is a nested sequence of closed non-empty and bounded sets in a complete metric space X with $\lim _{n \rightarrow \infty} \operatorname{diam} F_{n}=0$, then $\bigcap_{n=1}^{\infty} F_{n}$ contains exactly one point.
3. Complete the proof, sketched in class, of the so-called Lebesgue Criterion: A bounded function on an interval $[a, b]$ is Riemann integrable if and only if its set of discontinuities has measure zero.
(a) Prove that if the set of discontinuities of f has measure zero, then f is Riemann integrable.
[Hint: Let $\varepsilon>0$. Cover the compact set A_{ε} (defined in Q3(b)ii. above) by a finite number of open intervals whose total length is $\leq \varepsilon$. Select and appropriate partition of $[a, b]$ and estimate the difference between the upper and lower sums of f over this partition.]
(b) Prove that if f is Riemann integrable on $[a, b]$, then its set of discontinuities has measure zero. [Hint: The set of discontinuities of f is contained in $\bigcup_{n} A_{1 / n}$. Given $\varepsilon>0$, choose a partition P such that $U(f, P)-L(f, P)<\varepsilon / n$. Show that the total length of the intervals in P whose interiors intersect $A_{1 / n}$ is $\leq \varepsilon$.]

