Math 8100 Assignment 1 Preliminaries

Due date: Thursday the 2nd of September 2021

- 1. The **Cantor set** \mathcal{C} is the set of all $x \in [0,1]$ that have a ternary expansion $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ with $a_k \neq 1$ for all k. Thus \mathcal{C} is obtained from [0,1] by removing the open middle third $(\frac{1}{3},\frac{2}{3})$, then removing the open middle thirds $(\frac{1}{9},\frac{2}{9})$ and $(\frac{7}{9},\frac{8}{9})$ of the two remaining intervals, and so forth.
 - (a) Find a real number x belonging to the Cantor set which is not the endpoint of one of the intervals used in its construction.
 - (b) Prove that $\mathcal C$ is both nowhere dense (and hence meager) and has measure zero.
 - (c) Prove that \mathcal{C} is uncountable by showing that the function $f(x) = \sum_{k=1}^{\infty} b_k 2^{-k}$ where $b_k = a_k/2$, maps \mathcal{C} onto [0,1].
- 2. A set $A \subseteq \mathbb{R}^n$ is called an F_{σ} set if it can be written as the countable union of closed subsets of \mathbb{R}^n . A set $B \subseteq \mathbb{R}^n$ is called a G_{δ} set if it can be written as the countable intersection of open subsets of \mathbb{R}^n .
 - (a) Argue that a set is a G_{δ} set if and only if its complement is an F_{σ} set.
 - (b) Show that every closed set is a G_{δ} set and every open set is an F_{σ} set. Hint: One approach is to prove that every open subset of \mathbb{R}^n can be written as a countable union of closed cubes with disjoint interiors. This approach is however very specific to open sets in \mathbb{R}^n .
 - (c) Give an example of an F_{σ} set which is not a G_{δ} set and a set which is neither an F_{σ} nor a G_{δ} set.
- 3. (a) Let $\{r_n\}_{n=1}^{\infty}$ be any enumeration of all the rationals in [0,1] and define $f:[0,1]\to\mathbb{R}$ by setting

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = r_n \\ 0 & \text{if } x \in [0, 1] \setminus \mathbb{Q} \end{cases}.$$

Prove that $\lim_{x\to c} f(x) = 0$ for every $c \in [0,1]$ and conclude that set of all points at which f is discontinuous is precisely $[0,1] \cap \mathbb{Q}$.

- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be bounded.
 - i. Recall that we defined the oscillation of f at x to be

$$\omega_f(x) := \lim_{\delta \to 0^+} \sup_{y,z \in B_\delta(x)} |f(y) - f(z)|.$$

Briefly explain why this is a well defined notion and prove that

f is continuous at
$$x \iff \omega_f(x) = 0$$
.

- ii. Prove that for every $\varepsilon > 0$ the set $A_{\varepsilon} = \{x \in \mathbb{R} : \omega_f(x) \geq \varepsilon\}$ is closed and deduce from this that the set of all points at which f is discontinuous is an F_{σ} set.
- 4. Let $\{x_n\}_{n=1}^{\infty}$ be any enumeration of a given countable set $X \subseteq \mathbb{R}$. For each $n \in \mathbb{N}$ define

$$f_n(x) = \begin{cases} 1 \text{ if } x > x_n \\ 0 \text{ if } x \le x_n \end{cases}.$$

Prove that

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} f_n(x)$$

defines an increasing function f on \mathbb{R} that is continuous on $\mathbb{R} \setminus X$.

- 5. Let C([0,1]) denote the collection of all real-valued continuous functions with domain [0,1].
 - (a) Show that $d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) g(x)|$ defines a metric on C([0,1]) and that with the "uniform" metric C([0,1]) is in fact a *complete* metric space.
 - (b) Prove that the unit ball $\{f \in C([0,1]) : d_{\infty}(f,0) \leq 1\}$ is closed and bounded, but not compact.
 - (c) ** Challenge: Can you show that C([0,1]) with the metric d_{∞} is not totally bounded. A set is totally bounded if, for every $\varepsilon > 0$, it can be covered by finitely many balls of radius ε .
- 6. Let

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{1 + n^2 x}.$$

- (a) Show that the series defining g does not converge uniformly on $(0,\infty)$, but none the less still defines a continuous function on $(0, \infty)$.
 - Hint for the first part: Show that if $\sum_{n=0}^{\infty} g_n(x)$ converges uniformly on a set X, then the sequence of functions $\{g_n\}$ must converge uniformly to 0 on X.
- (b) Is g differentiable on $(0, \infty)$? If so, is the derivative function g' continuous on $(0, \infty)$?
- 7. Let $h_n(x) = \frac{x}{(1+x)^{n+1}}$.
 - (a) Prove that h_n converges uniformly to 0 on $[0, \infty)$.
 - (b) i. Verify that

$$\sum_{n=0}^{\infty} h_n(x) = \begin{cases} 1 \text{ if } x > 0\\ 0 \text{ if } x = 0 \end{cases}$$

- ii. Does $\sum_{n=0}^{\infty} h_n$ converge uniformly on $[0,\infty)$? (c) Prove that $\sum_{n=0}^{\infty} h_n$ converges uniformly on $[a,\infty)$ for any a>0.

Extra Challenge Problems

Not to be handed in with the assignment

- 1. Given an arbitrary F_{σ} set V, can you produce a function whose discontinuities lie precisely in V? Hint: First try to do this for an arbitrary closed set.
- 2. (Baire Category Theorem) Prove that if X is a non-empty complete metric space, then X cannot be written as a countable union of nowhere dense sets.

Hint: Modify the proof given in class of the special case $X = \mathbb{R}$ replacing the use of the nested interval property with the following fact (which you should prove):

If $F_1 \supseteq F_2 \supseteq \cdots$ is a nested sequence of closed non-empty and bounded sets in a complete metric space X with $\lim_{n\to\infty} \operatorname{diam} F_n = 0$, then $\bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

- 3. Complete the proof, sketched in class, of the so-called Lebesgue Criterion: A bounded function on an interval [a,b] is Riemann integrable if and only if its set of discontinuities has measure zero.
 - (a) Prove that if the set of discontinuities of f has measure zero, then f is Riemann integrable. [Hint: Let $\varepsilon > 0$. Cover the compact set A_{ε} (defined in Q3(b)ii. above) by a finite number of open intervals whose total length is $\leq \varepsilon$. Select and appropriate partition of [a, b] and estimate the difference between the upper and lower sums of f over this partition.]
 - (b) Prove that if f is Riemann integrable on [a, b], then its set of discontinuities has measure zero. [Hint: The set of discontinuities of f is contained in $\bigcup_n A_{1/n}$. Given $\varepsilon > 0$, choose a partition P such that $U(f,P)-L(f,P)<\varepsilon/n$. Show that the total length of the intervals in P whose interiors intersect $A_{1/n}$ is $\leq \varepsilon$.