Math 8100 Exam 1

Thursday the 14th of October 2021

Answer any THREE of the following four problems

- 1. (a) Prove, using the definition of Lebesgue outer measure, that $m_*(\bigcup_{j=1}^{\infty} E_j) \leq \sum_{j=1}^{\infty} m_*(E_j)$.
 - (b) Let E_1, E_2, \ldots be a countable collection of Lebesgue measurable subsets of \mathbb{R}^n that increase to E in the sense that $E_j \subseteq E_{j+1}$ for all j, and $E = \bigcup_{j=1}^{\infty} E_j$. Use the countable additivity of Lebesgue measure to prove that

$$m(E) = \lim_{j \to \infty} m(E_j).$$

(c) Prove that for any Lebesgue measurable set $E \subseteq \mathbb{R}^n$ one has

$$m(E) = \sup\{m(K) : K \subseteq E \text{ with } K \text{ compact}\}.$$

Hint: You may use, without proof, the fact that for any Lebesgue measurable set $E \subseteq \mathbb{R}^n$ and any $\varepsilon > 0$ there exists a closed set F with $F \subseteq E$ such that $m_*(E \setminus F) < \varepsilon$.

2. (a) Prove that if $E \subseteq \mathbb{R}^n$ is Lebesgue measurable, then for any $\delta > 0$ the dilated set

$$\delta E := \{ \delta x : x \in E \}$$

is also Lebesgue measurable and satisfies $m(\delta E) = \delta^n m(E)$.

- (b) Carefully state Fatou's Lemma and deduce the Monotone Convergence Theorem from it.
- (c) Prove that if f is a non-negative measurable function on \mathbb{R}^n and $\delta > 0$, then f_{δ} , defined by

$$f_{\delta}(x) = \delta^{-n} f(\delta^{-1} x)$$

is also a non-negative measurable function and

$$\int f(x) \, dx = \int f_{\delta}(x) \, dx.$$

- 3. (a) Carefully state the Dominated Convergence Theorem.
 - (b) Let $f \in L^1(\mathbb{R})$ and define

$$F(t) = \int_{\mathbb{R}} f(x)\sin(tx) \, dx.$$

- i. Prove that F is a bounded continuous function on \mathbb{R} .
- ii. Prove that if one additionally assumes that xf(x) is a Lebesgue integrable function on \mathbb{R} , then F is in fact differentiable at every t and find a formula for F'(t).
- 4. (a) Prove that if $f \in L^1(\mathbb{R}^n)$, then $|f(x)| < \infty$ almost everywhere.
 - (b) Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of functions in $L^1(\mathbb{R}^n)$.
 - i. Prove that if $\sum_{k=1}^{\infty} \|f_k\|_1 < \infty$, then $\sum_{k=1}^{\infty} f_k(x) < \infty$ almost everywhere.

Hint: You may use, without proof, the fact that for any sequence $\{f_k\}_{k=1}^{\infty}$ in $L^+(\mathbb{R}^n)$ one has

$$\int \sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \int f_k.$$

ii. Prove that if $f_k \to f$ in L^1 then $\{f_k\}_{k=1}^{\infty}$ must contain a subsequence which converges to f almost everywhere.