Fourier Series Handout

Recall that for $f \in L^1(\mathbb{T})$ the *N*th partial sum of the Fourier series of f is defined be

$$S_N f(x) = \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i n x}$$

where

$$\widehat{f}(n) = \int_0^1 f(x) e^{-2\pi i n x} \, dx,$$

for each $n \in \mathbb{Z}$. Recall that $L^1(\mathbb{T}) := \{f : \mathbb{R} \to \mathbb{C} : f(x+1) = f(x) \text{ for all } x \in \mathbb{R} \text{ and } f \in L^1([0,1]) \}.$

- 1. (a) Prove that if $f \in L^2(\mathbb{T})$ and $\{\widehat{f}(n)\}_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$, then $S_N f$ converges uniformly to f for almost every x and for every x if one makes the additional assumption that $f \in C(\mathbb{T})$.
 - (b) i. Prove that if $f \in C^1(\mathbb{T})$, then $S_N f$ converges uniformly to f. Hint: Use Cauchy-Schwarz and Parseval for f'.
 - ii. Prove that if $f \in C(\mathbb{T})$ and $f' \in L^2(\mathbb{T})$, then $S_N f$ converges uniformly to f.
 - (c) Prove the following strengthening of the result in part (a):

Theorem 1 (Periodic analogue of the Fourier inversion formula).

If $f \in L^1(\mathbb{T})$ and $\{\widehat{f}(n)\} \in \ell^1(\mathbb{Z})$, then $S_N f \to f$ uniformly for almost every x.

Hint: Prove that if $f \in L^1(\mathbb{T})$ *and* $\{\widehat{f}(n)\} \in \ell^1(\mathbb{Z})$ *, then* $f \in L^2(\mathbb{T})$ *.*

Note that Theorem 1 (or simply the hint above) has the following consequence:

Corollary 1. If $f \in L^1(\mathbb{T})$ and $\widehat{f}(n) = 0$ for all $n \in \mathbb{Z}$, then f(x) = 0 almost everywhere.

Both results in part (b) above in fact follow from either of the following deeper results:

Theorem 2 (Dini's Criterion). If, for some $x \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$, there exists $\delta > 0$ such that

$$\int_{|t| \le \delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \infty$$
(1)

then $S_N f(x)$ converges to f(x).

Theorem 3 (Jordan's Criterion). If f is of bounded variation in a neighborhood of x, then $S_N f(x) \to \frac{1}{2}[f(x+)+f(x-)]$. In particular $S_N f(x) \to f(x)$ at every x at which f is continuous.

Note that if f is Hölder continuous at x, namely $|f(x+t) - f(x)| \le C|t|^a$ for some a > 0, then f satisfies (1) for some $\delta > 0$. But, continuous functions need not satisfy (1) for any $\delta > 0$, in fact:

Theorem 4 (Du Bois-Reymond). There exist $f \in C(\mathbb{T})$ whose Fourier series diverges at a point.

2. Convergence of Fourier series is effectively a local property, and if the modifications are made outside of a neighborhood of x, then the behavior of the series at x does not change. Prove the following precise formulation of this phenomenon.

Theorem 5 (Riemann Localization Principle). If $f \in L^1(\mathbb{T})$ and constant on some neighborhood of a point $x \in \mathbb{T}$, then $S_N f(x) \to f(x)$.

Hint: Re-express the Nth partial sums as

$$S_N f(x) = f * D_N(x) := \int_0^1 f(y) D_N(x-y) \, dy$$
$$D_N(x) := \sum_{|n| \le N} e^{2\pi i n x} = \frac{\sin((2N+1)\pi x)}{\sin \pi x} \qquad \text{(Dirichlet kernel)}.$$

where

3. We shall now consider the Cesàro means of the $S_N f$, namely

$$\sigma_N f := \frac{1}{N} \sum_{n=0}^{N-1} S_n f = f * F_N$$

where

$$F_N(x) := \frac{1}{N} \sum_{n=0}^{N-1} D_n(x) = \frac{1}{N} \left(\frac{\sin(N\pi x)}{\sin \pi x} \right)^2 \qquad \text{(Fejér kernel)}.$$

(a) Verify that the Fejér kernel satisfies the following basic properties: i. $0 \leq F_N(x) \leq C \frac{1}{N} \min \left\{ N^2, \frac{1}{|x|^2} \right\}$ for some constant C > 0 and all $x \in [0, 1]$, ii. $\int_0^1 F_N(x) \, dx = 1$, iii. $\lim_{N \to \infty} \int_{\delta \leq |x| \leq \frac{1}{2}} F_N(x) \, dx = 0$ for any choice of $\delta > 0$. [Note also that $\widehat{F_N}(n) = \max \left\{ 1 - \frac{|n|}{N}, 0 \right\}$ for all $n \in \mathbb{Z}$.]

(b) Use the approximation to the identity-type properties above to prove the following

Theorem 6 (Fejér's Theorem). Let $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

- (i) (Classical version) If $f \in C(\mathbb{T})$, then $\sigma_N f \to f$ uniformly on \mathbb{T} as $N \to \infty$.
- (ii) (L¹-version) If $f \in L^1(\mathbb{T})$, then $\sigma_N f \to f$ in $L^1(\mathbb{T})$ as $N \to \infty$.

[It is also true that if $f \in L^p(\mathbb{T})$ with $1 \leq p < \infty$, then $\sigma_N f \to f$ in $L^p(\mathbb{T})$ as $N \to \infty$.]

- (c) Verify that Theorem 6 gives a new proof that *Trigonometric polynomials are dense in both* $C(\mathbb{T})$ and in $L^1(\mathbb{T})$, and that Theorem 6 (ii) provides a new proof of Corollary 1.
- 4. (a) i. Prove that if f is continuous and periodic with period 1, and α is irrational, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) = \int_0^1 f(x) \, dx.$$

Hint: Use the "Periodic Weierstrass Approximation Theorem".

ii. Conclude that if α is irrational, then the sequence of fractional parts $\langle \alpha \rangle, \langle 2\alpha \rangle, \langle 3\alpha \rangle, \ldots$, where $\langle x \rangle = x - \lfloor x \rfloor$, is equidistributed in [0, 1), that is for every interval $(a, b) \subset [0, 1)$,

$$\lim_{N \to \infty} \frac{\#\{1 \le n \le N : \langle n\alpha \rangle \in (a,b)\}}{N} = b - a.$$

(b) Prove that following more general criterion:

Theorem 7 (Weyl's Criterion). The following assertions concerning a given sequence $\{\xi_n\}$ in [0,1) are equivalent:

- (i) The sequence $\{\xi_n\}$ is equidistributed;
- (ii) For each integer $k \neq 0$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k \xi_n} = 0;$$

(iii) For any (Riemann) integrable function f on [0,1] that is periodic with period 1

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\xi_n) = \int_0^1 f(x) \, dx.$$