Math 8100 Assignment 8
 Basic Function Spaces

Due date: Friday the 16th of November 2018

1. Prove the following basic properties of $L^{\infty}=L^{\infty}(X)$, where X is a measurable subset of \mathbb{R}^{n} :
(a) $\|\cdot\|_{\infty}$ is a norm on L^{∞} and when equipped with this norm L^{∞} is a Banach space.
(b) $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ iff there exists $E \in \mathbb{R}^{n}$ such that $m\left(E^{c}\right)=0$ and $f_{n} \rightarrow f$ uniformly on E.
(c) Simple functions are dense in L^{∞}, but continuous functions with compact support are not. Recall that if $X \subseteq \mathbb{R}^{n}$ is measurable and f is a measurable function on X, then we define

$$
\|f\|_{\infty}=\inf \{a \geq 0: m(\{x \in X:|f(x)|>a\})=0\}
$$

with the convention that $\inf \emptyset=\infty$, and

$$
L^{\infty}=L^{\infty}(X)=\left\{f: X \rightarrow \mathbb{C} \text { measuarable }:\|f\|_{\infty}<\infty\right\}
$$

with the usual convention that two functions that are equal a.e. define the same element of L^{∞}. Thus $f \in L^{\infty}$ if and only if there is a bounded function g such that $f=g$ almost everywhere; we can take $g=f \chi_{E}$ where $E=\left\{x:|f(x)| \leq\|f\|_{\infty}\right\}$.
2. Let $X \subseteq \mathbb{R}^{n}$ be measurable.
(a) i. Prove that if $m(X)<\infty$, then

$$
\begin{equation*}
L^{\infty}(X) \subset L^{2}(X) \subset L^{1}(X) \tag{1}
\end{equation*}
$$

with strict inclusion in each case, and that for any measurable $f: X \rightarrow \mathbb{C}$ one in fact has

$$
\|f\|_{L^{1}(X)} \leq m(X)^{1 / 2}\|f\|_{L^{2}(X)} \leq m(X)\|f\|_{L^{\infty}(X)}
$$

ii. Give examples to show that no such result of the form (1) can hold if one drops the assumption that $m(x)<\infty$. Prove, furthermore, that if $L^{2}(X) \subseteq L^{1}(X)$, then $m(X)<\infty$.
(b) Prove that

$$
\underbrace{L^{1}(X) \cap L^{\infty}(X) \subset L^{2}(X)}_{(\star)} \subset L^{1}(X)+L^{\infty}(X)
$$

and that in addition to (\star) one in fact has

$$
\|f\|_{L^{2}(X)} \leq\|f\|_{L^{1}(X)}^{1 / 2}\|f\|_{L^{\infty}(X)}^{1 / 2}
$$

for any measurable function $f: X \rightarrow \mathbb{C}$.
3. Prove that

$$
\ell^{1}(\mathbb{Z}) \subset \ell^{2}(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z})
$$

with strict inclusion in each case, and that for any sequence $a=\left\{a_{j}\right\}_{j \in \mathbb{Z}}$ of complex numbers one in fact has

$$
\|a\|_{\ell^{\infty}(\mathbb{Z})} \leq\|a\|_{\ell^{2}(\mathbb{Z})} \leq\|a\|_{\ell^{1}(\mathbb{Z})} .
$$

Recall that for $p=1,2, \infty$ we define

$$
\ell^{p}(\mathbb{Z})=\left\{a=\left\{a_{j}\right\}_{j \in \mathbb{Z}} \subseteq \mathbb{C}:\|a\|_{\ell^{p}(\mathbb{Z})}<\infty\right\}
$$

where

$$
\|a\|_{\ell^{1}(\mathbb{Z})}=\sum_{j=-\infty}^{\infty}\left|a_{j}\right|, \quad\|a\|_{\ell^{2}(\mathbb{Z})}=\left(\sum_{j=-\infty}^{\infty}\left|a_{j}\right|^{2}\right)^{1 / 2}, \text { and }\|a\|_{\ell^{\infty}(\mathbb{Z})}=\sup _{j}\left|a_{j}\right| .
$$

4. Let H be a Hilbert space with orthonormal basis $\left\{u_{n}\right\}_{n=1}^{\infty}$.
(a) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers. Prove that

$$
\begin{array}{r}
\qquad \sum_{n=1}^{\infty} a_{n} u_{n} \text { converges in } H \Longleftrightarrow \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty \\
\text { and moreover that if } \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty, \text { then }\left\|\sum_{n=1}^{\infty} a_{n} u_{n}\right\|=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}
\end{array}
$$

(b) i. Is there a continuous linear functional L on H such that $L\left(u_{n}\right)=n^{-1}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
ii. Is there a continuous linear functional L on H such that $L\left(u_{n}\right)=n^{-1 / 2}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
5. For each $1 \leq p \leq \infty$, define $\Lambda_{p}: L^{p}([0,1]) \rightarrow \mathbb{R}$ by

$$
\Lambda_{p}(f)=\int_{0}^{1} x^{2} f(x) d x
$$

Explain why Λ_{p} is a continuous linear functional and compute its norm (in terms of p).

Extra Practice Problems
 Not to be handed in with the assignment

1. Let $C([0,1])$ denote the space of all continuous \mathbb{C}-valued functions on $[0,1]$.
(a) Prove that $C([0,1])$ is complete under the uniform norm $\|f\|_{u}:=\max _{x \in[0,1]}|f(x)|$.
(b) Prove that $C([0,1])$ is not complete under either the $L^{1}([0,1])$ or $L^{2}([0,1])$ norms.
2. Let f and g be two non-negative Lebesgue measurable functions on $[0, \infty)$. Suppose that

$$
A:=\int_{0}^{\infty} f(y) y^{-1 / 2} d y<\infty \quad \text { and } \quad B:=\left(\int_{0}^{\infty}|g(y)|^{2} d y\right)^{1 / 2}<\infty
$$

Prove that

$$
\int_{0}^{\infty}\left(\int_{0}^{x} f(y) d y\right) \frac{g(x)}{x} d x \leq A B
$$

3. Let $\left\{f_{k}\right\}$ be any sequence of functions in $L^{2}([0,1])$ satisfying $\left\|f_{k}\right\|_{2} \leq 1$ for all $k \in \mathbb{N}$.
(a) i. Prove that if $f_{k} \rightarrow f$ either a.e. on $[0,1]$ or in $L^{1}([0,1])$, then $f \in L^{2}([0,1])$ with $\|f\|_{2} \leq 1$.
ii. Do either of the above hypotheses guarantee that $f_{k} \rightarrow f$ in $L^{2}([0,1])$?
(b) Prove that if $f_{k} \rightarrow f$ a.e. on $[0,1]$, then this in fact implies that $f_{k} \rightarrow f$ in $L^{1}([0,1])$.
4. Let $1 \leq p \leq \infty$. Prove that if $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a sequence of functions in $L^{p}\left(\mathbb{R}^{n}\right)$ with the property that

$$
\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p}<\infty
$$

then $\sum f_{k}$ converges almost everywhere to an $L^{p}\left(\mathbb{R}^{n}\right)$ function with

$$
\left\|\sum_{k=1}^{\infty} f_{k}\right\|_{p} \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p}
$$

Extra Challenge Problems on Fourier Series

Not to be handed in with the assignment

Recall that if $f \in L^{1}(\mathbb{T}):=\left\{f \in L^{1}([0,1]): f(0)=f(1)\right\}$, then the N th partial sum of the Fourier series of f, is defined be

$$
S_{N} f(x)=\sum_{|n| \leq N} \widehat{f}(n) e^{2 \pi i n x}
$$

where

$$
\widehat{f}(n)=\int_{0}^{1} f(x) e^{-2 \pi i n x} d x
$$

for each $n \in \mathbb{Z}$.

1. (a) Prove that if $f \in L^{2}(\mathbb{T})$ and $\{\widehat{f}(n)\}_{n \in \mathbb{Z}} \in \ell^{1}(\mathbb{Z})$, then $S_{N} f$ converges uniformly to f for almost every $x \in[0,1]$ and for every $x \in[0,1]$ if one makes the additional assumption that $f \in C(\mathbb{T})$, namely 1-periodic and continuous.
(b) i. Prove that if $f \in C^{1}(\mathbb{T})$, then $S_{N} f$ converges uniformly to f.

Hint: Use Cauchy-Schwarz and Parseval for f^{\prime}.
ii. Prove that if $f \in C(\mathbb{T})$ and $f^{\prime} \in L^{2}(\mathbb{T})$, then $S_{N} f$ converges uniformly to f.

Both results in part (b) above in fact follow from the following deeper result:
Theorem 1 (Dini's Criterion). If, for some $x \in \mathbb{T}=\mathbb{R} / \mathbb{Z}$, there exists $\delta>0$ such that

$$
\begin{equation*}
\int_{|t| \leq \delta}\left|\frac{f(x+t)-f(x)}{t}\right| d t<\infty \tag{2}
\end{equation*}
$$

then $S_{N} f(x)$ converges to $f(x)$.
Note that if f is Hölder continuous at x, namely $|f(x+t)-f(x)| \leq C|t|^{a}$ for some $a>0$, then f satisfies (2) for some $\delta>0$. But, continuous functions need not satisfy (2) for any $\delta>0$, in fact:

Theorem 2 (Du Bois-Reymond). There exist $f \in C(\mathbb{T})$ whose Fourier series diverges at a point.

It is straightforward to see that one can re-express the N th partial sums as follows:

$$
S_{N} f(x)=f * D_{N}(x):=\int_{0}^{1} f(y) D_{N}(x-y) d y
$$

where

$$
D_{N}(x):=\sum_{|n| \leq N} e^{2 \pi i n x}=\frac{\sin ((2 N+1) \pi x)}{\sin \pi x} \quad \text { (Dirichlet kernel) }
$$

We shall now consider the Cesàro means of the $S_{N} f$, namely

$$
\sigma_{N} f:=\frac{1}{N} \sum_{n=0}^{N-1} S_{n} f=f * F_{N}
$$

where

$$
F_{N}(x):=\frac{1}{N} \sum_{n=0}^{N-1} D_{n}(x)=\frac{1}{N}\left(\frac{\sin (N \pi x)}{\sin \pi x}\right)^{2} \quad \text { (Fejér kernel) }
$$

2. (a) Verify that the Fejér kernel satisfies the following basic properties:
i. $0 \leq F_{N}(x) \leq C \frac{1}{N} \min \left\{N^{2}, \frac{1}{|x|^{2}}\right\}$ for some constant $C>0$ and all $x \in[0,1]$,
ii. $\int_{0}^{1} F_{N}(x) d x=1$,
iii. $\lim _{N \rightarrow \infty} \int_{\delta \leq|x| \leq \frac{1}{2}} F_{N}(x) d x=0 \quad$ for any choice of $\delta>0$.
[Note also that $\widehat{F_{N}}(n)=\max \left\{1-\frac{|n|}{N}, 0\right\}$ for all $n \in \mathbb{Z}$.]
(b) Use the approximation to the identity-type properties above to prove the following

Theorem 3 (Fejér's Theorem). Let $\mathbb{T}=\mathbb{R} / \mathbb{Z}$.
(i) (Classical version) If $f \in C(\mathbb{T})$, then $\sigma_{N} f \rightarrow f$ uniformly on \mathbb{T} as $N \rightarrow \infty$.
(ii) $\left(L^{1}\right.$-version) If $f \in L^{1}(\mathbb{T})$, then $\sigma_{N} f \rightarrow f$ in $L^{1}(\mathbb{T})$ as $N \rightarrow \infty$.
[It is also true that if $f \in L^{p}(\mathbb{T})$ with $1 \leq p<\infty$, then $\sigma_{N} f \rightarrow f$ in $L^{p}(\mathbb{T})$ as $N \rightarrow \infty$.]
(c) Verify that Theorem 3 gives a new proof that Trigonometric polynomials are dense in both $C(\mathbb{T})$ and in $L^{1}(\mathbb{T})$, and that Theorem 1 (ii) in particular has the following important (new) consequence:

Corollary 1.

$$
\text { If } f \in L^{1}(\mathbb{T}) \text { and } \widehat{f}(n)=0 \text { for all } n \in \mathbb{Z}, \text { then } f(x)=0 \text { for almost every } x \in \mathbb{T}
$$

3. Use Corollary 1 above to prove the following strengthening of Question 1 (a) above:

Theorem 4 (Periodic analogue of the Fourier inversion formula).
If $f \in L^{1}(\mathbb{T})$ and $\{\widehat{f}(n)\} \in \ell^{1}(\mathbb{Z})$, then $S_{N} f(x) \rightarrow f(x)$ for almost every $x \in \mathbb{T}$ as $N \rightarrow \infty$.
4. (a) i. Prove that if f is continuous and periodic with period 1 , and α is irrational, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(n \alpha)=\int_{0}^{1} f(x) d x
$$

Hint: Use the "Periodic Weierstrass Approximation Theorem".
ii. Conclude that if α is irrational, then the sequence of fractional parts $\langle\alpha\rangle,\langle 2 \alpha\rangle,\langle 3 \alpha\rangle, \ldots$, where $\langle x\rangle=x-\lfloor x\rfloor$, is equidistributed in $[0,1)$, that is for every interval $(a, b) \subset[0,1)$,

$$
\lim _{N \rightarrow \infty} \frac{\#\{1 \leq n \leq N:\langle n \alpha\rangle \in(a, b)\}}{N}=b-a
$$

(b) Prove that following more general criterion:

Theorem 5 (Weyl's Criterion). The following assertions concerning a given sequence $\left\{\xi_{n}\right\}$ in $[0,1)$ are equivalent:
(i) The sequence $\left\{\xi_{n}\right\}$ is equidistributed;
(ii) For each integer $k \neq 0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k \xi_{n}}=0
$$

(iii) For any (Riemann) integrable function f on $[0,1]$ that is periodic with period 1

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(\xi_{n}\right)=\int_{0}^{1} f(x) d x
$$

