Math 8100 Assignment 8 Basic Function Spaces

Due date: Friday the 16th of November 2018

- 1. Prove the following basic properties of $L^{\infty} = L^{\infty}(X)$, where X is a measurable subset of \mathbb{R}^n :
 - (a) $\|\cdot\|_{\infty}$ is a norm on L^{∞} and when equipped with this norm L^{∞} is a Banach space.
 - (b) $||f_n f||_{\infty} \to 0$ iff there exists $E \in \mathbb{R}^n$ such that $m(E^c) = 0$ and $f_n \to f$ uniformly on E.
 - (c) Simple functions are dense in L^{∞} , but continuous functions with compact support are not.

Recall that if $X \subseteq \mathbb{R}^n$ is measurable and f is a measurable function on X, then we define

 $||f||_{\infty} = \inf\{a \ge 0 : m(\{x \in X : |f(x)| > a\}) = 0\},\$

with the convention that $\inf \emptyset = \infty$, and

$$L^{\infty} = L^{\infty}(X) = \{ f : X \to \mathbb{C} \text{ measuarable} : \|f\|_{\infty} < \infty \},\$$

with the usual convention that two functions that are equal a.e. define the same element of L^{∞} . Thus $f \in L^{\infty}$ if and only if there is a bounded function g such that f = g almost everywhere; we can take $g = f\chi_E$ where $E = \{x : |f(x)| \le ||f||_{\infty}\}$.

2. Let $X \subseteq \mathbb{R}^n$ be measurable.

(a) i. Prove that if $m(X) < \infty$, then

$$L^{\infty}(X) \subset L^{2}(X) \subset L^{1}(X) \tag{1}$$

with strict inclusion in each case, and that for any measurable $f: X \to \mathbb{C}$ one in fact has

$$||f||_{L^1(X)} \le m(X)^{1/2} ||f||_{L^2(X)} \le m(X) ||f||_{L^\infty(X)}.$$

- ii. Give examples to show that no such result of the form (1) can hold if one drops the assumption that $m(x) < \infty$. Prove, furthermore, that if $L^2(X) \subseteq L^1(X)$, then $m(X) < \infty$.
- (b) Prove that

$$\underbrace{L^1(X) \cap L^\infty(X) \subset L^2(X)}_{(\star)} \subset L^1(X) + L^\infty(X)$$

and that in addition to (\star) one in fact has

$$||f||_{L^2(X)} \le ||f||_{L^1(X)}^{1/2} ||f||_{L^{\infty}(X)}^{1/2}$$

for any measurable function $f: X \to \mathbb{C}$.

3. Prove that

$$\ell^1(\mathbb{Z}) \subset \ell^2(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z})$$

with strict inclusion in each case, and that for any sequence $a = \{a_j\}_{j \in \mathbb{Z}}$ of complex numbers one in fact has

$$||a||_{\ell^{\infty}(\mathbb{Z})} \le ||a||_{\ell^{2}(\mathbb{Z})} \le ||a||_{\ell^{1}(\mathbb{Z})}.$$

Recall that for $p = 1, 2, \infty$ we define

$$\ell^p(\mathbb{Z}) = \{a = \{a_j\}_{j \in \mathbb{Z}} \subseteq \mathbb{C} : \|a\|_{\ell^p(\mathbb{Z})} < \infty\}$$

where

$$||a||_{\ell^{1}(\mathbb{Z})} = \sum_{j=-\infty}^{\infty} |a_{j}|, \quad ||a||_{\ell^{2}(\mathbb{Z})} = \left(\sum_{j=-\infty}^{\infty} |a_{j}|^{2}\right)^{1/2}, \text{ and } \quad ||a||_{\ell^{\infty}(\mathbb{Z})} = \sup_{j} |a_{j}|.$$

- 4. Let H be a Hilbert space with orthonormal basis $\{u_n\}_{n=1}^{\infty}$.
 - (a) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. Prove that

$$\sum_{n=1}^{\infty} a_n u_n \text{ converges in } H \iff \sum_{n=1}^{\infty} |a_n|^2 < \infty,$$

that if $\sum_{n=1}^{\infty} |a_n|^2 < \infty$ then $\left\|\sum_{n=1}^{\infty} a_n u_n\right\| = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2}$

and moreover that if
$$\sum_{n=1} |a_n|^2 < \infty$$
, then $\left\|\sum_{n=1} a_n u_n\right\| = \left(\sum_{n=1} |a_n|^2\right)^{1/2}$.

- (b) i. Is there a continuous linear functional L on H such that $L(u_n) = n^{-1}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
 - ii. Is there a continuous linear functional L on H such that $L(u_n) = n^{-1/2}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
- 5. For each $1 \leq p \leq \infty$, define $\Lambda_p : L^p([0,1]) \to \mathbb{R}$ by

$$\Lambda_p(f) = \int_0^1 x^2 f(x) \, dx$$

Explain why Λ_p is a continuous linear functional and compute its norm (in terms of p).

Extra Practice Problems

Not to be handed in with the assignment

- 1. Let C([0,1]) denote the space of all continuous \mathbb{C} -valued functions on [0,1].
 - (a) Prove that C([0,1]) is complete under the uniform norm $||f||_u := \max_{x \in [0,1]} |f(x)|$.
 - (b) Prove that C([0,1]) is <u>not</u> complete under either the $L^1([0,1])$ or $L^2([0,1])$ norms.
- 2. Let f and g be two non-negative Lebesgue measurable functions on $[0, \infty)$. Suppose that

$$A := \int_0^\infty f(y) y^{-1/2} dy < \infty \quad \text{and} \quad B := \left(\int_0^\infty |g(y)|^2 dy \right)^{1/2} < \infty$$

Prove that

$$\int_0^\infty \left(\int_0^x f(y)\,dy\right)\frac{g(x)}{x}\,dx \le AB$$

- 3. Let $\{f_k\}$ be any sequence of functions in $L^2([0,1])$ satisfying $||f_k||_2 \leq 1$ for all $k \in \mathbb{N}$.
 - (a) i. Prove that if $f_k \to f$ either a.e. on [0,1] or in $L^1([0,1])$, then $f \in L^2([0,1])$ with $||f||_2 \le 1$. ii. Do either of the above hypotheses guarantee that $f_k \to f$ in $L^2([0,1])$?
 - (b) Prove that if $f_k \to f$ a.e. on [0, 1], then this in fact implies that $f_k \to f$ in $L^1([0, 1])$.
- 4. Let $1 \leq p \leq \infty$. Prove that if $\{f_k\}_{k=1}^{\infty}$ is a sequence of functions in $L^p(\mathbb{R}^n)$ with the property that

$$\sum_{k=1}^{\infty} \|f_k\|_p < \infty$$

then $\sum f_k$ converges almost everywhere to an $L^p(\mathbb{R}^n)$ function with

$$\left\|\sum_{k=1}^{\infty} f_k\right\|_p \le \sum_{k=1}^{\infty} \|f_k\|_p$$

Extra Challenge Problems on Fourier Series

Not to be handed in with the assignment

Recall that if $f \in L^1(\mathbb{T}) := \{f \in L^1([0,1]) : f(0) = f(1)\}$, then the *N*th partial sum of the Fourier series of f, is defined be

$$S_N f(x) = \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i n x}$$

where

$$\widehat{f}(n) = \int_0^1 f(x) e^{-2\pi i n x} \, dx,$$

for each $n \in \mathbb{Z}$.

- 1. (a) Prove that if $f \in L^2(\mathbb{T})$ and $\{\widehat{f}(n)\}_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$, then $S_N f$ converges uniformly to f for almost every $x \in [0, 1]$ and for every $x \in [0, 1]$ if one makes the additional assumption that $f \in C(\mathbb{T})$, namely 1-periodic and continuous.
 - (b) i. Prove that if $f \in C^1(\mathbb{T})$, then $S_N f$ converges uniformly to f. Hint: Use Cauchy-Schwarz and Parseval for f'.
 - ii. Prove that if $f \in C(\mathbb{T})$ and $f' \in L^2(\mathbb{T})$, then $S_N f$ converges uniformly to f.

Both results in part (b) above in fact follow from the following deeper result:

Theorem 1 (Dini's Criterion). If, for some $x \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$, there exists $\delta > 0$ such that

$$\int_{|t| \le \delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \infty$$
(2)

then $S_N f(x)$ converges to f(x).

Note that if f is Hölder continuous at x, namely $|f(x+t) - f(x)| \le C|t|^a$ for some a > 0, then f satisfies (2) for some $\delta > 0$. But, continuous functions need not satisfy (2) for any $\delta > 0$, in fact:

Theorem 2 (Du Bois-Reymond). There exist $f \in C(\mathbb{T})$ whose Fourier series diverges at a point.

It is straightforward to see that one can re-express the Nth partial sums as follows:

$$S_N f(x) = f * D_N(x) := \int_0^1 f(y) D_N(x-y) \, dy$$

where

$$D_N(x) := \sum_{|n| \le N} e^{2\pi i n x} = \frac{\sin((2N+1)\pi x)}{\sin \pi x} \qquad \text{(Dirichlet kernel)}.$$

We shall now consider the Cesàro means of the $S_N f$, namely

$$\sigma_N f := \frac{1}{N} \sum_{n=0}^{N-1} S_n f = f * F_N$$

where

$$F_N(x) := \frac{1}{N} \sum_{n=0}^{N-1} D_n(x) = \frac{1}{N} \left(\frac{\sin(N\pi x)}{\sin \pi x} \right)^2 \qquad \text{(Fejér kernel)}.$$

2. (a) Verify that the Fejér kernel satisfies the following basic properties:

i.
$$0 \leq F_N(x) \leq C \frac{1}{N} \min\left\{N^2, \frac{1}{|x|^2}\right\}$$
 for some constant $C > 0$ and all $x \in [0, 1]$,
ii. $\int_0^1 F_N(x) \, dx = 1$,
iii. $\lim_{N \to \infty} \int_{\delta \leq |x| \leq \frac{1}{2}} F_N(x) \, dx = 0$ for any choice of $\delta > 0$.
[Note also that $\widehat{F_N}(n) = \max\left\{1 - \frac{|n|}{N}, 0\right\}$ for all $n \in \mathbb{Z}$.]

(b) Use the approximation to the identity-type properties above to prove the following

Theorem 3 (Fejér's Theorem). Let $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

- (i) (Classical version) If $f \in C(\mathbb{T})$, then $\sigma_N f \to f$ uniformly on \mathbb{T} as $N \to \infty$.
- (ii) (L¹-version) If $f \in L^1(\mathbb{T})$, then $\sigma_N f \to f$ in $L^1(\mathbb{T})$ as $N \to \infty$.

[It is also true that if $f \in L^p(\mathbb{T})$ with $1 \leq p < \infty$, then $\sigma_N f \to f$ in $L^p(\mathbb{T})$ as $N \to \infty$.]

(c) Verify that Theorem 3 gives a new proof that Trigonometric polynomials are dense in both C(T) and in L¹(T), and that Theorem 1 (ii) in particular has the following important (new) consequence:
 Corollary 1.

If
$$f \in L^1(\mathbb{T})$$
 and $\widehat{f}(n) = 0$ for all $n \in \mathbb{Z}$, then $f(x) = 0$ for almost every $x \in \mathbb{T}$.

3. Use Corollary 1 above to prove the following strengthening of Question 1 (a) above:

Theorem 4 (Periodic analogue of the Fourier inversion formula).

If $f \in L^1(\mathbb{T})$ and $\{\widehat{f}(n)\} \in \ell^1(\mathbb{Z})$, then $S_N f(x) \to f(x)$ for almost every $x \in \mathbb{T}$ as $N \to \infty$.

4. (a) i. Prove that if f is continuous and periodic with period 1, and α is irrational, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) = \int_{0}^{1} f(x) \, dx.$$

Hint: Use the "Periodic Weierstrass Approximation Theorem".

ii. Conclude that if α is irrational, then the sequence of fractional parts $\langle \alpha \rangle, \langle 2\alpha \rangle, \langle 3\alpha \rangle, \ldots$, where $\langle x \rangle = x - \lfloor x \rfloor$, is equidistributed in [0, 1), that is for every interval $(a, b) \subset [0, 1)$,

$$\lim_{N \to \infty} \frac{\#\{1 \le n \le N : \langle n\alpha \rangle \in (a,b)\}}{N} = b - a.$$

(b) Prove that following more general criterion:

Theorem 5 (Weyl's Criterion). The following assertions concerning a given sequence $\{\xi_n\}$ in [0,1) are equivalent:

- (i) The sequence $\{\xi_n\}$ is equidistributed;
- (ii) For each integer $k \neq 0$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k \xi_n} = 0;$$

(iii) For any (Riemann) integrable function f on [0,1] that is periodic with period 1

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\xi_n) = \int_0^1 f(x) \, dx.$$