
Math 8100 Assignment 8

Basic Function Spaces

Due date: Friday the 16th of November 2018

1. Prove the following basic properties of L∞ = L∞(X), where X is a measurable subset of Rn:

(a) ‖ · ‖∞ is a norm on L∞ and when equipped with this norm L∞ is a Banach space.

(b) ‖fn − f‖∞ → 0 iff there exists E ∈ Rn such that m(Ec) = 0 and fn → f uniformly on E.

(c) Simple functions are dense in L∞, but continuous functions with compact support are not.

Recall that if X ⊆ Rn is measurable and f is a measurable function on X, then we define

‖f‖∞ = inf{a ≥ 0 : m({x ∈ X : |f(x)| > a}) = 0},

with the convention that inf ∅ =∞, and

L∞ = L∞(X) = {f : X → C measuarable : ‖f‖∞ <∞},

with the usual convention that two functions that are equal a.e. define the same element
of L∞. Thus f ∈ L∞ if and only if there is a bounded function g such that f = g almost
everywhere; we can take g = fχE where E = {x : |f(x)| ≤ ‖f‖∞}.

2. Let X ⊆ Rn be measurable.

(a) i. Prove that if m(X) <∞, then

L∞(X) ⊂ L2(X) ⊂ L1(X) (1)

with strict inclusion in each case, and that for any measurable f : X → C one in fact has

‖f‖L1(X) ≤ m(X)1/2‖f‖L2(X) ≤ m(X)‖f‖L∞(X).

ii. Give examples to show that no such result of the form (1) can hold if one drops the assumption
that m(x) <∞. Prove, furthermore, that if L2(X) ⊆ L1(X), then m(X) <∞.

(b) Prove that
L1(X) ∩ L∞(X) ⊂ L2(X)︸ ︷︷ ︸

(?)

⊂ L1(X) + L∞(X)

and that in addition to (?) one in fact has

‖f‖L2(X) ≤ ‖f‖
1/2
L1(X)‖f‖

1/2
L∞(X)

for any measurable function f : X → C.

3. Prove that
`1(Z) ⊂ `2(Z) ⊂ `∞(Z)

with strict inclusion in each case, and that for any sequence a = {aj}j∈Z of complex numbers one in
fact has

‖a‖`∞(Z) ≤ ‖a‖`2(Z) ≤ ‖a‖`1(Z).

Recall that for p = 1, 2,∞ we define

`p(Z) = {a = {aj}j∈Z ⊆ C : ‖a‖`p(Z) <∞}

where

‖a‖`1(Z) =

∞∑
j=−∞

|aj |, ‖a‖`2(Z) =
( ∞∑
j=−∞

|aj |2
)1/2

, and ‖a‖`∞(Z) = sup
j
|aj |.
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4. Let H be a Hilbert space with orthonormal basis {un}∞n=1.

(a) Let {an}∞n=1 be a sequence of complex numbers. Prove that

∞∑
n=1

anun converges in H ⇐⇒
∞∑
n=1

|an|2 <∞,

and moreover that if

∞∑
n=1

|an|2 <∞, then
∥∥∥ ∞∑
n=1

anun

∥∥∥ =
( ∞∑
n=1

|an|2
)1/2

.

(b) i. Is there a continuous linear functional L on H such that L(un) = n−1 for all n ∈ N?
If L exists, find its norm.

ii. Is there a continuous linear functional L on H such that L(un) = n−1/2 for all n ∈ N?
If L exists, find its norm.

5. For each 1 ≤ p ≤ ∞, define Λp : Lp([0, 1])→ R by

Λp(f) =

∫ 1

0

x2f(x) dx.

Explain why Λp is a continuous linear functional and compute its norm (in terms of p).

Extra Practice Problems
Not to be handed in with the assignment

1. Let C([0, 1]) denote the space of all continuous C-valued functions on [0, 1].

(a) Prove that C([0, 1]) is complete under the uniform norm ‖f‖u := maxx∈[0,1] |f(x)|.
(b) Prove that C([0, 1]) is not complete under either the L1([0, 1]) or L2([0, 1]) norms.

2. Let f and g be two non-negative Lebesgue measurable functions on [0,∞). Suppose that

A :=

∫ ∞
0

f(y) y−1/2dy <∞ and B :=

(∫ ∞
0

|g(y)|2dy
)1/2

<∞

Prove that ∫ ∞
0

(∫ x

0

f(y) dy

)
g(x)

x
dx ≤ AB

3. Let {fk} be any sequence of functions in L2([0, 1]) satisfying ‖fk‖2 ≤ 1 for all k ∈ N.

(a) i. Prove that if fk → f either a.e. on [0, 1] or in L1([0, 1]), then f ∈ L2([0, 1]) with ‖f‖2 ≤ 1.

ii. Do either of the above hypotheses guarantee that fk → f in L2([0, 1])?

(b) Prove that if fk → f a.e. on [0, 1], then this in fact implies that fk → f in L1([0, 1]).

4. Let 1 ≤ p ≤ ∞. Prove that if {fk}∞k=1 is a sequence of functions in Lp(Rn) with the property that

∞∑
k=1

‖fk‖p <∞,

then
∑
fk converges almost everywhere to an Lp(Rn) function with∥∥∥ ∞∑

k=1

fk

∥∥∥
p
≤
∞∑
k=1

‖fk‖p.
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Extra Challenge Problems on Fourier Series
Not to be handed in with the assignment

Recall that if f ∈ L1(T) := {f ∈ L1([0, 1]) : f(0) = f(1)}, then the N th partial sum of the Fourier series of
f , is defined be

SNf(x) =
∑
|n|≤N

f̂(n)e2πinx

where

f̂(n) =

∫ 1

0

f(x)e−2πinx dx,

for each n ∈ Z.

1. (a) Prove that if f ∈ L2(T) and {f̂(n)}n∈Z ∈ `1(Z), then SNf converges uniformly to f for almost
every x ∈ [0, 1] and for every x ∈ [0, 1] if one makes the additional assumption that f ∈ C(T),
namely 1-periodic and continuous.

(b) i. Prove that if f ∈ C1(T), then SNf converges uniformly to f .

Hint: Use Cauchy-Schwarz and Parseval for f ′.

ii. Prove that if f ∈ C(T) and f ′ ∈ L2(T), then SNf converges uniformly to f .

Both results in part (b) above in fact follow from the following deeper result:

Theorem 1 (Dini’s Criterion). If, for some x ∈ T = R/Z, there exists δ > 0 such that∫
|t|≤δ

∣∣∣f(x+ t)− f(x)

t

∣∣∣ dt <∞ (2)

then SNf(x) converges to f(x).

Note that if f is Hölder continuous at x, namely |f(x+ t)− f(x)| ≤ C|t|a for some a > 0, then f
satisfies (2) for some δ > 0. But, continuous functions need not satisfy (2) for any δ > 0, in fact:

Theorem 2 (Du Bois-Reymond). There exist f ∈ C(T) whose Fourier series diverges at a point.

It is straightforward to see that one can re-express the Nth partial sums as follows:

SNf(x) = f ∗DN (x) :=

∫ 1

0

f(y)DN (x− y) dy

where

DN (x) :=
∑
|n|≤N

e2πinx =
sin((2N + 1)πx)

sinπx
(Dirichlet kernel).

We shall now consider the Cesàro means of the SNf , namely

σNf :=
1

N

N−1∑
n=0

Snf = f ∗ FN

where

FN (x) :=
1

N

N−1∑
n=0

Dn(x) =
1

N

( sin(Nπx)

sinπx

)2
(Fejér kernel).
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2. (a) Verify that the Fejér kernel satisfies the following basic properties:

i. 0 ≤ FN (x) ≤ C 1

N
min

{
N2,

1

|x|2
}

for some constant C > 0 and all x ∈ [0, 1],

ii.

∫ 1

0

FN (x) dx = 1,

iii. lim
N→∞

∫
δ≤|x|≤ 1

2

FN (x) dx = 0 for any choice of δ > 0.

[Note also that F̂N (n) = max
{

1− |n|
N
, 0
}

for all n ∈ Z.]

(b) Use the approximation to the identity-type properties above to prove the following

Theorem 3 (Fejér’s Theorem). Let T = R/Z.

(i) (Classical version) If f ∈ C(T), then σNf → f uniformly on T as N →∞.

(ii) (L1-version) If f ∈ L1(T), then σNf → f in L1(T) as N →∞.

[It is also true that if f ∈ Lp(T) with 1 ≤ p <∞, then σNf → f in Lp(T) as N →∞.]

(c) Verify that Theorem 3 gives a new proof that Trigonometric polynomials are dense in both C(T)
and in L1(T), and that Theorem 1 (ii) in particular has the following important (new) consequence:

Corollary 1.

If f ∈ L1(T) and f̂(n) = 0 for all n ∈ Z, then f(x) = 0 for almost every x ∈ T.

3. Use Corollary 1 above to prove the following strengthening of Question 1 (a) above:

Theorem 4 (Periodic analogue of the Fourier inversion formula).

If f ∈ L1(T) and {f̂(n)} ∈ `1(Z), then SNf(x)→ f(x) for almost every x ∈ T as N →∞.

4. (a) i. Prove that if f is continuous and periodic with period 1, and α is irrational, then

lim
N→∞

1

N

N∑
n=1

f(nα) =

∫ 1

0

f(x) dx.

Hint: Use the “Periodic Weierstrass Approximation Theorem”.

ii. Conclude that if α is irrational, then the sequence of fractional parts 〈α〉, 〈2α〉, 〈3α〉, . . . , where
〈x〉 = x− bxc, is equidistributed in [0, 1), that is for every interval (a, b) ⊂ [0, 1),

lim
N→∞

#{1 ≤ n ≤ N : 〈nα〉 ∈ (a, b)}
N

= b− a.

(b) Prove that following more general criterion:

Theorem 5 (Weyl’s Criterion). The following assertions concerning a given sequence {ξn}
in [0, 1) are equivalent:

(i) The sequence {ξn} is equidistributed;

(ii) For each integer k 6= 0,

lim
N→∞

1

N

N∑
n=1

e2πikξn = 0;

(iii) For any (Riemann) integrable function f on [0, 1] that is periodic with period 1

lim
N→∞

1

N

N∑
n=1

f(ξn) =

∫ 1

0

f(x) dx.

4


