Math 8100 Assignment 4 Lebesgue Integration

Due date: Friday the 28th of September 2018

Definition. Let E be a Lebesgue measurable subset of \mathbb{R}^n .

We say that a measurable function $f: E \to \mathbb{C}$ is integrable on E if $\int_E |f(x)| dx < \infty$.

- 1. (a) Give an example of a continuous integrable function f on \mathbb{R} for which $f(x) \to 0$ as $|x| \to \infty$.
 - (b) Prove that if f is integrable on $\mathbb R$ and uniformly continuous, then $\lim_{|x|\to\infty}f(x)=0$.
- 2. Let f be an integrable function on \mathbb{R}^n .
 - (a) Prove that $\{x: |f(x)| = \infty\}$ has measure equal to zero.
 - (b) Let $\varepsilon > 0$. Prove that there exists a measurable set E with $m(E) < \infty$ for which

$$\int_{E}|f|>\left(\int|f|\right)-\varepsilon.$$

- 3. Let f be a function in $L^+(\mathbb{R}^n)$ that is finite almost everywhere.
 - (a) Let $E_{2^k} = \{x: f(x) > 2^k\}$, $F_k = \{x: 2^k < f(x) \le 2^{k+1}\}$, and note that since f is finite almost everywhere it follows that $\bigcup_{k=-\infty}^{\infty} F_k = \{x: f(x) > 0\}$, and the sets F_k are disjoint. Prove that

$$\int f(x) < \infty \iff \sum_{k=-\infty}^{\infty} 2^k m(F_k) < \infty \iff \sum_{k=-\infty}^{\infty} 2^k m(E_{2^k}) < \infty.$$

(b) Prove that

$$\int_{\mathbb{R}^n} f(x) dx = \int_0^\infty m(\{x \in \mathbb{R}^n : f(x) > t\}) dt.$$

4. Prove the following:

(a) $\int_{\{x \in \mathbb{R}^n : |x| \le 1\}} |x|^{-p} dx < \infty \quad \text{if and only if} \quad p < n.$

(b) $\int_{\{x\in\mathbb{R}^n\,:\,|x|\geq 1\}} |x|^{-p}\,dx <\infty \quad \text{if and only if} \quad p>n.$

Hint: One possible approach is to use the first equivalence in Question 3 above. I suggest however that in this case you also try simply writing \mathbb{R}^n as a disjoint union of the annuli $A_k = \{2^k < |x| \le 2^{k+1}\}$.

5. Given any integrable function f on \mathbb{R}^n , the Fourier transform of f is defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i x \cdot \xi} dx$$

1

where $x \cdot \xi = x_1 \xi_1 + \dots + x_n \xi_n$. Show that \widehat{f} is a bounded continuous function of ξ .

- 6. Let $\{f_k\}$ be a sequence of integrable functions on \mathbb{R}^n , f be integrable on \mathbb{R}^n , and $\lim_{k\to\infty} f_k = f$ a.e.
 - (a) Suppose further that

$$\lim_{k \to \infty} \int |f_k(x)| \, dx = A < \infty \qquad \text{and} \qquad \int |f(x)| \, dx = B.$$

i. Prove that

$$\lim_{k \to \infty} \int |f_k(x) - f(x)| \, dx = A - B.$$

Hint: Use the fact that

$$|f_k(x)| - |f(x)| \le |f_k(x) - f(x)| \le |f_k(x)| + |f(x)|.$$

- ii. Give an example of a sequence $\{f_k\}$ of such functions for which $A \neq B$.
- (b) Deduce that

$$\int |f - f_k| \to 0 \quad \Longleftrightarrow \quad \int |f_k| \to \int |f|.$$

7. (a) Suppose that f(x) and xf(x) are both integrable functions on \mathbb{R} . Prove that the function

$$F(t) = \int_{\mathbb{R}} f(x) \cos(tx) \, dx.$$

is differentiable at every t and find a formula for F'(t).

(b) Giving complete justification, evaluate

$$\lim_{t \to 0} \int_0^1 \frac{e^{t\sqrt{x}} - 1}{t} \, dx.$$

Extra Challenge Problems

Not to be handed in with the assignment

- 1. Assume Fatou's theorem and deduce the monotone convergence theorem from it.
- 2. A sequence $\{f_k\}$ of integrable functions on \mathbb{R}^n is said to converge in measure to f if for every $\varepsilon > 0$,

$$\lim_{k \to \infty} m(\{x \in \mathbb{R}^n : |f_k(x) - f(x)| \ge \varepsilon\}) = 0.$$

- (a) Prove that if $f_k \to f$ in L^1 then $f_k \to f$ in measure.
- (b) Give an example to show that the converse of Question 2a is false.
- (c) Prove that if we make the additional assumption that there exists an integrable function g such that $|f_k| \leq g$ for all k, then $f_k \to f$ in measure implies that
 - i. * (Bonus points) $f \in L^1$

Hint: First show that $\{f_k\}$ contains a subsequence which converges to f almost everywhere.

ii. $f_k \to f$ in L^1 .

Hint: Try using absolute continuity and "small tails property" of the Lebesgue integral.

3. Let $\Omega \subseteq \mathbb{R}^n$ be measurable with $m(\Omega) < \infty$. A set $\Phi \subseteq L^1(\Omega)$ is said to be uniformly integrable if, for any $\varepsilon > 0$ there exists $\delta > 0$ such that whenever $f \in \Phi$ and $E \subseteq \Omega$ is measurable with $m(E) < \delta$, then

$$\int_{E} |f(x)| \, dx < \varepsilon.$$

- (a) Prove that if $f \in L^1(\Omega)$ and $\{f_k\}$ is a uniformly integrable sequence of functions in $L^1(\Omega)$ such that $f_k \to f$ almost everywhere on Ω , then $f_k \to f$ in $L^1(\Omega)$.
- (b) Is it necessary to assume that $f \in L^1(\Omega)$?