Math 8100 Assignment 3 Lebesgue measurable sets and functions

Due date: Wednesday the 19th of September 2018

1. Let E be a Lebesgue measurable subset of \mathbb{R}^{n} with $m(E)<\infty$ and $\varepsilon>0$. Show that there exists a set A that is a finite union of closed cubes such that $m(E \triangle A)<\varepsilon$.
[Recall that $E \triangle A$ stands for the symmetric difference, defined by $E \triangle A=(E \backslash A) \cup(A \backslash E)$]
2. Let E be a Lebesgue measurable subset of \mathbb{R}^{n} with $m(E)>0$ and $\varepsilon>0$.
(a) Prove that E"almost" contains a closed cube in the sense that there exists a closed cube Q such that $m(E \cap Q) \geq(1-\varepsilon) m(Q)$.
(b) Prove that the so-called difference set $E-E:=\{d: d=x-y$ with $x, y \in E\}$ necessarily contains an open ball centered at the origin.
Hint: It may be useful to observe that $d \in E-E \Longleftrightarrow E \cap(E+d) \neq \emptyset$.
3. We say that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is upper semicontinuous at a point x in \mathbb{R}^{n} if

$$
f(x) \geq \limsup _{y \rightarrow x} f(y)
$$

Prove that if f is upper semicontinuous at every point x in \mathbb{R}^{n}, then f is Borel measurable.
4. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on \mathbb{R}^{n}. Prove that

$$
\left\{x \in \mathbb{R}^{n}: \lim _{n \rightarrow \infty} f_{n}(x) \text { exists }\right\}
$$

is a measurable set.
5. Recall that the Cantor set \mathcal{C} is the set of all $x \in[0,1]$ that have a ternary expansion $x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$ with $a_{k} \neq 1$ for all k. Consider the function

$$
f(x)=\sum_{k=1}^{\infty} b_{k} 2^{-k} \text { where } b_{k}=a_{k} / 2
$$

(a) Show that f is well defined and continuous on \mathcal{C}, and moreover $f(0)=0$ as well as $f(1)=1$.
(b) Prove that there exists a continuous function that maps a measurable set to a non-measurable set.
6. Let us examine the map f defined in Question 5 even more closely. One readily sees that if $x, y \in \mathcal{C}$ and $x<y$, then $f(x)<f(y)$ unless x and y are the two endpoints of one of the intervals removed from $[0,1]$ to obtain \mathcal{C}. In this case $f(x)=\ell 2^{m}$ for some integers ℓ and m, and $f(x)$ and $f(y)$ are the two binary expansions of this number. We can therefore extend f to a map $F:[0,1] \rightarrow[0,1]$ by declaring it to be constant on each interval missing from \mathcal{C}. F is called the Cantor-Lebesgue function.
(a) Prove that F is non-decreasing and continuous.
(b) Let $G(x)=F(x)+x$. Show that G is a bijection from $[0,1]$ to $[0,2]$.
(c) i. Show that $m(G(\mathcal{C}))=1$.
ii. By considering rational translates of \mathcal{N} (the non-measurable subset of $[0,1]$ that we constructed in class), prove that $G(\mathcal{C})$ necessarily contains a (Lebesgue) non-measurable set \mathcal{N}^{\prime}.
iii. Let $E=G^{-1}\left(\mathcal{N}^{\prime}\right)$. Show that E is Lebesgue measurable, but not Borel.
(d) Give an example of a measurable function φ such that $\varphi \circ G^{-1}$ is not measurable.

Hint: Let φ be the characteristic function of a set of measure zero whose image under G is not measurable.

Extra Challenge Problems

Not to be handed in with the assignment

1. Let $\chi_{[0,1]}$ be the characteristic function of $[0,1]$. Show that there is no function f satisfying $f=\chi_{[0,1]}$ almost everywhere which is also continuous on all of \mathbb{R}.
2. Question 6d above supplies us with an example that if f and g are Lebesgue measurable, then it does not necessarily follow that $f \circ g$ will be Lebesgue measurable, even if g is assumed to be continuous.
Prove that if f is Borel measurable, then $f \circ g$ will be Lebesgue or Borel measurable whenever g is.
3. Let f be a measurable function on $[0,1]$ with $|f(x)|<\infty$ for a.e. x. Prove that there exists a sequence of continuous functions $\left\{g_{n}\right\}$ on $[0,1]$ such that $g_{n} \rightarrow f$ for a.e. $x \in[0,1]$.
