Math 8100 Assignment 1

Preliminaries

Due date: Friday the 24th of August 2018 — Extended to Monday the 27th of August 2018

1. The Cantor set C is the set of all z € [0,1] that have a ternary expansion z = Y -, a;3~* with
ap # 1 for all k. Thus C is obtained from [0, 1] by removing the open middle third (1, 2), then removing
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the open middle thirds (§,2) and (Z, 3) of the two remaining intervals, and so forth.

(a)

(b)
(c)

9’9
Find a real number = belonging to the Cantor set which is not the endpoint of one of the intervals
used in its construction.
Prove that C is both nowhere dense (and hence meager) and has measure zero.

Prove that C is uncountable by showing that the function f(z) = > 7 bx27* where by = a/2,
maps C onto [0, 1].

2. A set A CR"™ is called an F set if it can be written as the countable union of closed subsets of R™. A
set B C R™ is called a Gj set if it can be written as the countable intersection of open subsets of R™.

(a)
(b)

Argue that a set is a G4 set if and only if its complement is an F, set.

Show that every closed set is a G5 set and every open set is an F, set.

Hint: One approach is to prove that every open subset of R™ can be written as a countable union
of closed cubes with disjoint interiors. This approach is however very specific to open sets in R™.

Give an example of an F,, set which is not a G set and a set which is neither an F, nor a G set.
Let {r,} be any enumeration of all the rationals in [0, 1] and define f : [0,1] — R by setting
L ife=r,
z)=14"
J(@) { ifxe[0,1]\Q

Prove that lim f(x) = 0 for every ¢ € [0,1] and conclude that set of all points at which f is
discontinquSi; precisely [0,1] N Q.
Let f: R — R be bounded.

i. Recall that we defined the oscillation of f at x to be

wy(z) == lim  sup |f(y) — f(2)]-
5—07 y,2€Bs(x)

Briefly explain why this is a well defined notion and prove that
[ is continuous at z <= wy(x) =0.

ii. Prove that for every € > 0 the set A, = {x € R : wy(z) > ¢} is closed and deduce from this
that the set of all points at which f is discontinuous is an F, set.

4. Let {z,}52; be any enumeration of a given countable set X C R. For each n € N define

Oif x <z,

fn(x):{lifx>xn

Prove that

o0

F@) =3 = fala)

n=1

defines an increasing function f on R that is continuous on R\ X.



5. Let C([0,1]) denote the collection of all real-valued continuous functions with domain [0, 1].

(a) Show that doo(f,g) = sup |f(xz)—g(x)| defines a metric on C([0,1]) and that with the “uniform”
0.1
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metric C([0,1]) is in fact a complete metric space.
(b) Prove that the unit ball {f € C([0,1]) : do(f,0) < 1} is closed and bounded, but not compact.
(¢) ** Challenge: Can you show that C([0, 1]) with the metric dw is not totally bounded.

A set is totally bounded if, for every e > 0, it can be covered by finitely many balls of radius €.

6. Let
1
n=0
(a) Show that the series defining g does not converge uniformly on (0,00), but none the less still
defines a continuous function on (0, o).

Hint for the first part: Show that if Y. gn(x) converges uniformly on a set X, then the sequence
of functions {g,} must converge uniformly to 0 on X.

(b) Is g differentiable on (0,00)? If so, is the derivative function ¢’ continuous on (0, c0)?
x

. Let hp(x) = —————.
7 ¢ (l’) (1 + m)n—i—l
(a) Prove that h,, converges uniformly to 0 on [0, c0).

(b) 1. Verify that
= lifz >0
PBLACES
— Oifx=0
ii. Does > 7 h,, converge uniformly on [0, c0)?
(c) Prove that > 7, h, converges uniformly on [a, o) for any a > 0.

Extra Challenge Problems
Not to be handed in with the assignment

1. Given an arbitrary F, set V, can you produce a function whose discontinuities lie precisely in V'?

Hint: First try to do this for an arbitrary closed set.

2. (Baire Category Theorem) Prove that if X is a non-empty complete metric space, then X cannot be
written as a countable union of nowhere dense sets.
Hint: Modify the proof given in class of the special case X = R replacing the use of the nested interval
property with the following fact (which you should prove):

If F1 O Fy D -+ is a nested sequence of closed non-empty and bounded sets in a complete

(o]
metric space X with lim diam F,, = 0, then [\ F, contains exactly one point.

n—00 n=1

3. Complete the proof, sketched in class, of the so-called Lebesgue Criterion: A bounded function on an
interval [a,b] is Riemann integrable if and only if its set of discontinuities has measure zero.

(a) Prove that if the set of discontinuities of f has measure zero, then f is Riemann integrable.
[Hint: Let € > 0. Cover the compact set A. (defined in Q3(b)ii. above) by a finite number of
open intervals whose total length is < €. Select and appropriate partition of [a,b] and estimate the
difference between the upper and lower sums of f over this partition.)

(b) Prove that if f is Riemann integrable on [a, b], then its set of discontinuities has measure zero.

[Hint: The set of discontinuities of f is contained in \J,, A1/,,. Given e >0, choose a partition P
such that U(f, P)—L(f, P) < &/n. Show that the total length of the intervals in P whose interiors
intersect Ay, is < . |



