Math 8100 Exam 2

Wednesday the 27th of November 2018

Answer any $\underline{\text{THREE}}$ of the following four problems

1. Let $f, g \in L^1([0, 1])$ and for each $0 \le x \le 1$ define

$$F(x) := \int_0^x f(y) \, dy$$
 and $G(x) := \int_0^x g(y) \, dy$.

Prove that

$$\int_0^1 F(x)g(x)\,dx = F(1)G(1) - \int_0^1 f(x)G(x)\,dx$$

2. Let $\varphi \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \varphi(x) \, dx = 1$ and $\varphi_t(x) := t^{-n} \varphi(t^{-1}x)$. Prove that if $f : \mathbb{R}^n \to \mathbb{C}$ is bounded and uniformly continuous, then $f * \varphi_t$ converges uniformly to f as $t \to 0$.

Hint: You may assume, with out proof, that for any $\varepsilon > 0$, there exists N such that

$$\int_{|x|\ge N} |\varphi(x)| \, dx < \varepsilon.$$

- 3. Let $g \in L^{\infty}([0,1])$.
 - (a) Prove that $\lim_{p \to \infty} \|g\|_{L^p([0,1])} = \|g\|_{L^\infty([0,1])}.$
 - (b) Let $L^1([0,1])^*$ denote the space of all *continuous linear functional* on $L^1([0,1])$. Prove that the mapping $\Lambda_g : L^1([0,1]) \to \mathbb{C}$ defined by

$$\Lambda_g(f) := \int_0^1 fg$$

for each $f \in L^1([0,1])$ defines an element of $L^1([0,1])^*$ with norm $\|\Lambda_g\|_{L^1([0,1])^*} = \|g\|_{L^{\infty}([0,1])}$.

- 4. Let $\{u_n\}_{n=1}^{\infty}$ be an orthonormal set in a Hilbert space H.
 - (a) Let x be any element of H. Verify that

$$\left\|x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n\right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$

for any $N \in \mathbb{N}$ and deduce from this Bessel's inequality, namely that

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2.$$

(b) Let $\{a_n\}$ be any element of $\ell^2(\mathbb{N})$. Prove that there exist $x \in H$ such that $a_n = \langle x, u_n \rangle$ for all $n \in \mathbb{N}$, and moreover that x may be chosen so that

$$||x|| = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2}.$$

(c) Prove that if $\{u_n\}_{n=1}^{\infty}$ is *complete*, namely that it has the property that x = 0 whenever $\langle x, u_n \rangle = 0$ for all $n \in \mathbb{N}$, then

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 = ||x||^2 \text{ for every } x \in H.$$