Math 8100 Exam 1

Wednesday the 10th of October 2018

Answer any <u>FOUR</u> of the following five problems

- 1. Let E be a bounded subset of \mathbb{R}^n . Prove that the following two statements are equivalent:
 - (i) For any $\varepsilon > 0$, there exists an open set G and closed set F such that $F \subseteq E \subseteq G$ and $m(G \setminus F) < \varepsilon$.
 - (ii) There exists a G_{δ} set V and an F_{σ} set H such that $H \subseteq E \subseteq V$ and $m(V \setminus H) = 0$.
- 2. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of extended real-valued Lebesgue measurable functions.
 - (a) Prove that $\sup_k f_k$ is a Lebesgue measurable function
 - (b) Deduce that if $\lim_{k\to\infty} f_k(x)$ exists for every $x \in \mathbb{R}^n$ this is also a Lebesgue measurable function.

Clearly indicate what definition/properties of Lebesgue measurable functions/sets you are using.

3. (a) Prove that if $E \subseteq \mathbb{R}^n$ is Lebesgue measurable, then for any $h \in \mathbb{R}$ the translated set

$$E + h := \{x + h : x \in E\}$$

is also Lebesgue measurable and satisfies m(E+h) = m(E).

Clearly indicate what definition/properties of Lebesgue measurable sets you are using.

(b) Prove that if f is a non-negative measurable function on \mathbb{R}^n and $h \in \mathbb{R}^n$, then $\tau_h f$, defined by

$$\tau_h f(x) = f(x-h)$$

is also a non-negative measurable function and

$$\int f(x) \, dx = \int f(x-h) \, dx.$$

Clearly indicate what definition/properties of the Lebesgue integral you are using.

- 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a Lebesgue measurable function.
 - (a) Prove that

$$m\left(\left\{x \in \mathbb{R}^n : |f(x)| > \alpha\right\}\right) \le \frac{1}{\alpha} \int |f(x)| \, dx$$

for all $\alpha > 0$.

(b) Prove that

$$\int |f(x)| \, dx = 0 \quad \Longleftrightarrow \quad f = 0 \quad \text{almost everywhere}$$

- 5. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence in $L^1([0,1])$ which converges in L^1 to a function f.
 - (a) Prove that f must also be in $L^1([0,1])$.
 - (b) Give an example illustrating that $\{f_k\}_{k=1}^{\infty}$ may not converges to f almost everywhere.
 - (c) Prove that $\{f_k\}_{k=1}^{\infty}$ must however contain a subsequence which converges to f almost everywhere.