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This notation ig perhaps not the best, but it is the Customary one. Note that
Ll = | i(E)i, but that in general | 4 (E) is not squat to | y(£)].

It turns out, as will be proved below, that lal actually is a measure, so that
our problem docs have a solution, The discussion which led 1o (3) shows then
clearly that | gt} is the minimal solution, in the sense that any other solution 2 has
the property AE) = [nl(Epforall E e o

The sct function Liel is called the roral variation of y, or sometinies, 1o avoid
misundcrsmndiﬂg, the total variation measure, The term “total variation of #7 is
also frequently used Lo denote the number fal(X)

If pis a positive measure, then of course [ = po

Besides being a meastire, j i) has another unexpected property: | u|(X) < oo,
Since | u{F)| < 1 H(E) = | 1](X), this implies that every complex measy
any c-algebra is bounded: If the range of g lies in the cempiex plane, then it
actually lics in some disc of finile radius. This property (proved in Theorem 6.4} is

sometimes expressed by saying that u is of bounded variation.

¢ j on

6.2 Theorem The torul variation |y

of a complex méasure roon YR is a positive
measure oi N,

PrOOE Let {E} be a partition of £ e M. Let ¢; be real numbers such that
i < |pI{E). Then each E, has o partition {4} such that

TirApl = (=123 ) (1)

Since {4} (i, j = 1,2, 3, <.} is a partition of E, it follows that

Z L= Z LA | < [ pd(r). {2
i ii

Taking the supremum of the left side of (2}, over all admissible choices of {1},
we see (hat

2 i) < (B, (3)

To prove the opposite incqualily, tet {4;} be any partition of E. Then for
any fixed j, {4; m E:} is a partition of ;. and for any fixed 1, {A;n E)isa
partition of E;. Hence
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Since (4} holds for ¢very partition {A;} of E, we have

5
|11 (B) < T 1 I(ED. )

By (3) and (5), | | is countably additive.

i d (4).
Note that the Corollary to Tllgorcm 1'.217 wzizcuslcl:;lnlél (CZ)? 'E;‘tll] ! érlm 64 bt
That | u| is not identically co is a trivial conscq o
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Choose 8, so as to maximize the last
maximum is at least as large as the average o

average is 71 Y, |z, because

! J‘“cos+ (ot-—@)dﬂ:i
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»
>Re ¥ ez, =} |zl cos™ (o — 4).
Tl k=1

sum, and put S = S50y} This
f the sum over [ —wn, n], and this

m )
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for every o
6.4 Theorem If u is a complex measure on X, then
el (X) < oo.

set EeW has |pi(E)=c. Pul

Proor Suppose first  that some {E.} of E such that

t = n(1 + | u(E)|). Since | x| (E) > , there is a partition

M=

u(E)| > ¢
1

|3

at there is a set
ome N. Apply Lemma 6.3, with z; = p(E_,-), to conclude that the
if;l‘cs Efa m;ion of some of the sets E;) for which

| (A > t/n > L.

Setting B = E -~ 4, it follows that

N> L — 1B = 1.
| (B)| = | {E) — p(A)| = | {A)| — | #(E)] = - 1 1(E)|
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We have thus split £ into disjoint sets A and B with 1144} > 1 and
[ #(B}| > 1. Evidently, at least onc of | u|(A) and [141(B) is co, by Theorem 6.2.

Now if |u[(X) = oo, split X into A4,, B,, as above, with | u(d,}| > 1,
[#1(B;) = co. Split B, into Az, By, with |u(4,)) = 1, [11(B;) = . Contin-
uing in this way, we B¢t a countably infinite disjeint collection {4;}, with
[1{A}] > 1 for each {. The countable additivily of p implies that

(92)-pon

But this scrics cannot converge, since p{d;) docs not tend to 0 as - . This
contradiction shows that [ 1](X) < w0, Il

0.5 1M pand 1 are complex measures on the same o-algebra M, we define o -+ A
and ¢y by
(1 + ANE) = p(E} + ME)
(et)(E} = ci(E)

for any sealar ¢, in the usual manner, It is then rivial to verify that i + A and et

are complex measures, The collection of afl complex measures on 9% is thus a
vector space. If we put

(E &9 )

el =1 1(X), {2)

it is casy to verify that all axioms of a normed linear space are satisfied.

6.6 Positive and Negative Variations Let us now specialize and consider a real
MEAsure jt on a g-algebra M. (Such measures are frequently called signed mea-
sures.) Define | u| as before, and define

=gl a =) — ), (1

Then both p* and 4~ are positive measures on M, and they are bounded, by
Theorem 6.4. Also,

e A A P (2}

The measures ;% and #” are called the positive and hegative variations of p,
respeclively. This representation of # as the difference of the positive measures ut
amct 1~ is known as the Jordan decomposition of p. Among all representations of
# as a difference of two positive measures, the jordan decomposition has a

cerlain minimum properly which will be established as a corollary to Theorem
6.14,
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Absolute Continuity

6.7 Definitions Let i be a positive measure on a g-algebra M, and let 2 be an
arbitrary measure on 9; 1 may be positive or complex. (Recall that a
complex measure has its range in the complex plane, but that our usage of
the term “positive measure” includes oo as an admissible value. Thus the
positive measures do not form a subclass of the complex ones))

We say that A is absolutely continuous with respect (o g, and write

P (0

if A(E) = 0 for every E & M for which y(E) = 0.

If there is a sel A e M such that A(E) = A(4 n E} for every E e M, we
say that 1 is concentrated on A. This is equivalent to the hypothesis that
ME) = 0 whenever E n A = (.

Suppose A, and 1, are measures on 9, and suppose there exists a pair of
disjoint sets 4 and B such that 4, is concentrated on 4 and 4, is concen-
trated on B. Then we say that A, and 2, arc mutually singular, and writc

Ay LAy @

Here are some elementary propertics of these concepts.

6.8 Proposition Suppose, g, A A, and A, are measures on a g-algebra I, and p
is positive.

(@) If Ais concentrated on 4, sois| 4|,

(0 Ifd, LAy thenjd | L 1A,].

(€) IfA, Lpand Ay £ pthen i, + A, L
(d) If A, €pand iy <€ p then Ay + 4, € .
(e} IfA <, then|A| <€

(Y IfA, €pand 25 L pthen 1; L A5,

(g fA<gpandd L p then A =0,

Proor

(@)  En A= and {E;} is any partition of E, then A(E) =0 for all j.
Hence | 4| (E) = 0.

{b) This follows immediately from {a).

(¢) There are disjoint sets 4; and B, such that 4, is concentraled on 4, and
; on B, and there are disjoint sets A, and B, such that 4, is concen-
trated on 4, and g on B,. Hence 4, + 4, is concentrated on A = 4, v

Ay, ptis concentrated on B = B, n By, and A n B = (.

() This is obvious.

(¢) Suppose p(E) = 0, and {E}} is a partition of E. Then p(E) = 0; and since
2 <y, A(E)) = 0 for all j, hence )’ | A(E;)| = 0. This implies | 1] (E) = 0.
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() S:::zs iz i i, ;hc(:;j 15 & sel A with j(4) = 0 on which 1; is concentrated
€4t 4(E) = 0 for every E : ) ated.
complement of . Y L So 1, is concentrated on the

(&) By (f), the hypothesis of (y) implics, that 1 3 2

oy » and this clearly forces

i

' : about absolute conlinuity. In fuct, it
o ant 111(:91'011} I measure theory. s statlement will
1e following lemma describes one of their significant

. We come now to the principal theorem
is probably the most import
Involve g-finite measures.
propeitics.

p T . .
6.9 Lemma If yiis o positive o-finite measure

- 7o ; on a g-algebra W i .
there is a function w & INu) such that < gebra W in a set X, then

(x) < | for every x e X

D S T Qr r 1 H
PRroor To say that I8 o-finite means (hat

sets 15, € 0 gm0 & is the union of countably many

) for whi S
Yo ) for which #(E,) is finite. Pur W) =0 if ve
‘ wy(x} = 27+ u(E,)

Wxe L Thenw= e w, has the required propertics, I

The point of the lemma i
(namely, dji = w dye) which,
sume sets of measure ) as I

5 that u can be replaced by a finite

s th : measure i
because of the strict positivity of w ﬁ

has precisely 1he

0.10 The Theore
monsar 8 o1 L;ll ]of l?d)csgue—Ra(!on—Nikodym Let p be a positive o finite
- o " . - ' ;
@ a-algebra M in a set X, and let 2 he a complex neasure on M {

( ) 1 t’l(_’J ¢ IS Il,(’i { ””({ ¢ DI COMHe; medasnres 41 [ .” 1 } i
a e ! H i O){ () I X o /1,, fn’ A ¢ Sheh ”’ t
d %

A= ’]‘u -+ )‘:H ’l‘u < N )“s L .

Ifai iti . (1
If Zis {)05;(1::@ and finite, then so are 1 and 1
b) There is a unique h LNy sueh tha ’ v

LBy = | & dn )

oJE
Jor every set | e 9.

~The pair (2, 4) is called the £
uniquencss of the decomposition is ¢
satisfies (1), then

besge decomposition of 1 relative to yr. The

asily seen, for if (A, ') is another pair which

Av— A=A~ 1, (3}

we have used 6.8{¢),

Ao — 2, <, and A — AL
6.5(), and 6.8(g), ‘

It hence both sides of (3) are 0:
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The existence of the decomposition is the significant part of {a).
Assertion (b) is known as the Radon-N ilkodym theorem. Again, uniquencss of
h is immediate, from Theorem 1.39(h). Also, if kis any member of L), the
integral in (2) defines a measure on M (Theorem 1.29) which is clearly absolutely
continuous with respect to . The point of the Radon-Nikodym theorem is the
converse: Every A < p (in which case 4, = A} is obtained in this way.

The function h which occurs in (2) is called the Radon-Nikedym derivative of

A, with respect to . As noted after Theorem 1.29, we may express (2) in the form

dA, = h dy, or cven in the form h = dA.fdi
The idea of the following proof, which yiclds both {1}

due to von Neumann.

and () at one stroke, is

ProoF Assume first that A is a positive bounded measure on M. Associale w

to pt as in Lemma 6.9. Then do = d) + w dp defines a positive bounded
measure ¢ on M. The definition of the sum of two measures shows that

'3

\[f(lcp = jj‘di + J Swdp (4)
x x :

asurable f. If

X

for /= yg, hence for simple /. hence for any nonnegative me
§ & i) the Schwarz inequality gives

ifz
[_,f dil < J| fldr< Jm dg < {J K2l drp} {p(X0} 2
JX X X X

Since @{X) < oo, we sce that

- [ [k
X

is 2 bounded linear functional on I}(g). We know that every bounded lincar
functional on a Hilbert space H is given by an inner product with an clement

of H. Henee there exists a g € I{gp) such that

J_fdﬂ» P Jfg do {0

far every f & Hp).
Observe how the completeness of F{p) was used to guaran

tence of g. Obsorve also that although g is defined uniquely as an clement of

(), g is determined only ae. [l asa point function on X

Putf=ypin(6), forany E e
ME), and since 0 < 1 £ @. we have

1 ME)
O<— {gdep= < 1.
o(E) fj P E)

(3)

tee the cxis-

an with @{E) > 0. The Ieft side of (6} is then

i
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Henee g{x) e {0, 17 for ak i
b X atmost all x (with respe ’
oncs o pect Lo ), by Theorem 1.
dy 10!0[02:0 assume that 0 < g(x) < 1 for every x € X, without afli "10. o,
and we rewrite (6) in the form ’ e #beting (0

.
-

(l — { i I;{ =3 Ty
J.\‘ Nl e J“‘_/gn du, (8)
Put
A= {,\'I 0< (j(\') < ]}, 3 == {_\j_‘ glx) = l}, )
and deline measures A, and 2, b}
AJE) = HA n E), AE) = B~ E), (10)

for all £ e 9.
T =y in (8), the lefl side i i
X 15 O, the right side i ' This
lor zl{t. X, wc.concluclc that ;(B) = 0. TIuTs I/;.L-I :(}G o o ody Since vt > 0
Since g is bounded, (8) holds iffis rcp!z:ccd by

(Lb g+ ok g™
forn=123 . EeM For such f, (8) becomes

- s = "
L( g ) dA L-‘/H Ty g"w dp (n

At every point of B, g(x
L g{x) =1, heace 1 — g"*t(x i i
ey g L ¢ (x) = 0. At cvery po
j 1 {x} N 0 111({11010121(,51“)'. The left side of (11) converse S’UP mft ?f .
et 0 B) = 2(E) as 11— oo, # ferdore o
Tl H . o .y M
neg‘“i:’t; :;lllt:,llg;j;]ibf 0;1 [l}f ’ughl side of (11) increase monotonically to  non
‘ measuraple lmit b, and the monotone conver : l ;
thal\tﬂl;c frlghl side of (11) tends to fehdpasn—s o Frence theorem shows
¢ have thus proved that {2) h y
‘ h olds for y I ing &£ =X
sce thal b e Lp), since 1,(X) < cr:z ovony € Taking £ = X we
F' . o
Hu;d-le, {2) shows that 1, < g, and the prool'is complele for positive
o és a complex measurc on M, then 4 = Ay - idy, with A, and 2 ;c-l
an apply the preceding case 1o the positive and ncgalilvc V'lr;’zlti()(l;s’

of 1, and 1,.
i

1T botl : ar e .
We can m:“ft 11}([ A:uc positive and ¢-finite, most of Theorem 6.10 is still
resn LCb:;ulc Ad w= [ X"., 'whcre M) < oo and (X)) < o3, for ,‘l =1 f)[u;'
Lebosgue dee guc _C‘CDmposmons of the measurcs AME X),stiH ive,ln’ ,
o 600 oo of b and wo sl get o favton | which s
’ > onger truc that h e M), sy
g EI"c’ Tz b di < oo for eact n. 1€ LG, although I is “locatly in
“inally, 1 ; G
reins Undc{-’ éf :vc_j,cibgj ond g-finiteness, we meet situations where the two 1l
on (0. 1 mdo{ls: ;[ﬁ“m] ac{ual])_( fail. For example, lot it be Lebesgue mc“ﬁ(}
, 1), ¢ c ¢ the counting measure on the a-algebra of all ch;;gjz
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measurable sets in (0. 1). Then 2 has no Lebesgue decomposition relative to i, and
although < A and p is bounded, there is no h e IMA) such that dp=hdl. We

omit the easy proof.
The following theorem may explain why the word © continuity ™ is used in

connection with the relation 2 <€ g

6.11 Theorem Suppose p and X are measures on a a-algebra I, p is positive,
and A is complex. Then the following two conditions are equivalent :

@ A <€
(b) To every ¢ =0 corresponds a & > 0 such that | ME)| <€ for all £ e
with n(E) < 8.

Property (b) is sometimes used as the definition of absolute continuity,
However, (q) does not imply (b) if 1 is a posilive unbounded measure. For
instance, let ¢ be Lebesgue measure on (0, 1), and put

ME) = [r“‘ dr

Je
for every Lebesgue measurable set I < (0, 1)

Proor Suppose (b) holds. If p(E) = 0, then pu(E} < § for cvery d > 0, hence
| A(E)| < e for every € > 0,50 A(E) = 0. Thus {b) imptlies (a).

Suppose (b) is false. Then there exists an € > 0 and there exist sets E, €
O (=1, 2. 3, ...) such that p(E,) < 27" but |A(E)}| z e Hence |AI(E,) = <.
Put

A= E, A=A (1)
i=n n=x

Then u(d,) < 2%, A, = A+, and so Theorem 1.19(e) shows that j(A) =0
and that

(21(A) = lim [A](A,) = €> 0,

Her

since | A[(4,) = |11 (E,).
It follows that we do not have | 2| < g, hence (a) is false, by Proposition

6.8(e). i

Conscquences of the Radon-Nikodym Theorem

6.12 Theorem Let pt be a complex measure on a g-algebra S in X. Then there
is @ measurable function h such that | {x)| = 1 for all x € X and such that

di = hdipnl. (1
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B a1 M VT M
. -1[)5};)1‘1:)[:2‘%[}, wuh[lhc u,pi)cscu[auon ol a complex number as the product of
§ alue and a number of absolule val i i
aluc 1, Eq. (1) is sometimes referr
‘ plue an ' . Eq. s referre
to as Lhe polar represemation (or polar decomposition) of . o

3 : g frivis P y
I,R,O.C,)i It is luwa.] that p < [u|, and therctore the Raden-Nikodym theorem
gu.uﬁntccs lh?f cxistence of some b & D{ e}) which salisfics (1)
et A, = {x:|h(x)] < r}, where r is s it ber,
ct A, : b e r is some positiv { D
a parlition of A, , Then b ° mber, and ft {Ej} e

%IMQN=§‘LﬁM#d$ZrWH@F”WdM&

so that | g[(A,) < ripd(A). 15 r < 1, this f
0= 1). , this forces | w| (4,) = 0. Thus F
On the other hand, if | 1{ (£) > 0, (1) shows that ) ettt tac
[ ()]

I
|mm&”” @ =

We now apply Theorem [.40 (wi i
d . th the closed ise i oo af &
conclude that [ 1] < 1 aie, sed unit disc in place of §) and

rcdcé:z:: ‘;3: {[\3 € )il ”1(;‘” # 1}. We have shown that |p|(B) = 0, and if we

1on B so that f(x) = o o .

properties, {x) = 1 on B, we obtain a function with the dcs1;cd
1/

6.13 Theorem S ve IS it
v Suppose pis a positive meastre on I, g € INp, and

ME) = f.q di (E e ). (1)
I
Then
HI(E)=Ilgid;r (& M). 2)
£ -

) ) ) e . .
Ibitoorv By Theorem 6.12, there is a function h, of absolute value 1, such tha
di =1l d|A{. By hypothesis, dd = ¢ dy. Hence h ‘

h d!);,i _—_—y{['u_

Thissg?vivcs lri |j/1| = hg dp. {Compare with Theorem [.29.)
ince = 0and p =0, it follows that /i i A
we.inl ows thal g = 0 ac. [u], so that fg :}/g;/f(

3 e IL]I"l DL‘ 0 051{100 corem cl jt e a real measure on a4 o-
6 I‘-‘ l ! conosit
) I ]l L } L} 108 {.

algebra WM | U i
gebra SR in o set X. Then there exist sets A and B e 9 such that
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AuB=X, An B=, and such that the positive and negative variations
uand 1 af posatis(y

WHE) = pd o B), po(B)= —u(B ) (EeM) )

In other words, X is the union of two disjoint measurablé sets A and B, such
that “A carries all the positive mass of p” [since (1) implies that p(l5) =z 0 if
E = A7 and “B carries all the negative mass of p” [since u(f) < 0 if £ = B]. The
pair (A, B) is called a Haln decomposition of X, induced by a.

Proor By Theorem 6.12, dp = h d [y}, where [h] = L Since p is real, it fol-
fows that & is real (a.c, and thercfore everywhere, by redelining on a set of
measure 0, hence i = £ 1. Pul

A =[x h{xy =1}, B={x:hx)=—1}. (2)
Since p* = 4} + 1), and since

h on A4,

3
0 onB, @)

L1 4 b= {

we have, [or any E € ¥,

1
pHE) =73 L(l + b dip] = J

Enr

hdlpul=wE n A (4)
A

Since p(E) = u(E n A) + 1(E ~ B) and since i = it — p”, the second half of
(1) foltows from the first. i

Corollary If st = 2, — A5, where 4, and &, are positive measures, then Ay = 1t
and Ay = n”.

This is the minimum property of the Jordan decomposition which was men-
tioned in Sec. 6.6.

Proor Since g < 4, we have

pHE) = )(E n A) = M(E n A) < 4(E) 1



