Math 8100 Practice Exam 2

November 2014

This is much longer than an actual exam would be, but should hopefully still help with your studying!

1. Fubini-Tonelli

- (a) Carefully state Tonelli's theorem for a non-negative function F(x,t) on $\mathbb{R}^n \times \mathbb{R}$.
- (b) Let $f : \mathbb{R}^n \to [0, \infty]$ and

$$\mathcal{A} = \{ (x, t) \in \mathbb{R}^n \times \mathbb{R} : 0 \le t \le f(x) \}$$

Prove the validity of the following two statements:

i. f is a Lebesgue measurable function on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1}

ii. If f is a Lebesgue measurable function on $\mathbb{R}^n,$ then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x) \, dx = \int_0^\infty m(\{x \in \mathbb{R}^n : f(x) \ge t\}) \, dt$$

Hint: In any part of this question you may use, without proof, the fact that if f(x) is a Lebesgue measurable function on \mathbb{R}^n , then F(x,t) = f(x) is a Lebesgue measurable function on $\mathbb{R}^n \times \mathbb{R}$.

2. Convolutions and the Fourier transform

(a) i. Give a definition for the *convolution* f * g of two integrable functions f and g on Rⁿ.
ii. Prove that if f and g are bounded integrable functions on Rⁿ, then

$$\lim_{|x| \to \infty} f * g(x) = 0$$

Hint: Recall that $|x| \leq |x - y| + |y|$

* Can you find an example of two non-negative integrable functions f and g for which

$$\lim_{|x| \to \infty} f * g(x) \neq 0?$$

(b) Let $\varphi \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \varphi(x) \, dx = 1$ and $\varphi_t(x) := t^{-n} \varphi(t^{-1}x)$. Prove that if $f \in L^1(\mathbb{R}^n)$, then

$$\lim_{t \to 0} \int \left| f * \varphi_t(x) - f(x) \right| dx = 0.$$

(c) i. Give a definition of the *Fourier transform* of an integrable function f on \mathbb{R}^n .

ii. Give an outline of the proof of the Fourier inversion formula, namely that if f and \hat{f} are functions in $L^1(\mathbb{R}^n)$, then

$$f(x) = \int_{\mathbb{R}^n} \widehat{f}(x) e^{2\pi i x \cdot \xi} \, d\xi$$

for almost every $x \in \mathbb{R}^n$.

iii. Give an example, no proofs required, of a function in $L^1(\mathbb{R}^n)$ whose Fourier transform is not in $L^1(\mathbb{R}^n)$.

3. Hilbert spaces

Let $\{u_n\}_{n=1}^{\infty}$ be an orthonormal set in a Hilbert space H.

(a) Let x be any element of H. Verify that

$$\left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$

for any $N \in \mathbb{N}$ and deduce from this Bessel's inequality, namely that

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2.$$

(b) Let $\{a_n\}$ be any element of $\ell^2(\mathbb{N})$. Prove that there exist $x \in H$ such that $a_n = \langle x, u_n \rangle$ for all $n \in \mathbb{N}$, and moreover that x may be chosen so that

$$||x|| = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2}.$$

(c) Prove that if $\{u_n\}_{n=1}^{\infty}$ is *complete*, namely that it has the property that x = 0 whenever $\langle x, u_n \rangle = 0$ for all $n \in \mathbb{N}$, then

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 = ||x||^2$$

for every $x \in H$.

4. L^p spaces

(a) (Hölder's inequality) Let $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$ with $1 < p, q < \infty$ conjugate exponents. Prove that $fg \in L^1(\mathbb{R}^n)$ with

$$||fg||_1 \le ||f||_p ||g||_q.$$

Hint: You may use, without proof, the fact that $AB \leq A^p/p + B^q/q$ for any non-negative real numbers A and B.

(b) (Minkowski's inequality) Let $f, g \in L^p(\mathbb{R}^n)$ with $1 \le p < \infty$. Prove that $f + g \in L^p(\mathbb{R}^n)$ with

$$||f + g||_p \le ||f||_p + ||g||_p.$$

- (c) Let X = [0, 1].
 - i. Give a definition for the Banach space, $L^{\infty}(X)$, of essentially bounded functions on X.
 - ii. Let f be a non-negative measurable function on X. Prove that $\lim_{p\to\infty}\int_X f(x)^p dx$ is either ∞ or $m(\{f^{-1}(1)\})$, and characterize the collection of functions f of each type.

5. Dual spaces

Let $(X, \|\cdot\|)$ be a normed vector space.

- (a) Give the definition of what it means for a mapping $L: X \to \mathbb{C}$ to be a *linear functional*.
- (b) Give the definition of what it means for a *linear functional* L to be *bounded* and prove that this notion is equivalent to L being continuous.
- (c) Prove that the dual space of X, namely the space of all continuous linear functionals on X, denoted by X^* is *Banach space* when equipped with the *operator norm*.