Math 8100 Assignment 9 Basic Function Spaces

Due date: Friday the 14th of November 2014

- 1. Prove the following basic properties of $L^{\infty} = L^{\infty}(X)$, where X is a measurable subset of \mathbb{R}^n :
 - (a) $\|\cdot\|_{\infty}$ is a norm on L^{∞} and when equipped with this norm L^{∞} is a Banach space.
 - (b) $||f_n f||_{\infty} \to 0$ iff there exists $E \in \mathbb{R}^n$ such that $m(E^c) = 0$ and $f_n \to f$ uniformly on E.
 - (c) Simple functions are dense in L^{∞} , but continuous functions with compact support are not.

Recall that if $X \subseteq \mathbb{R}^n$ is measurable and f is a measurable function on X, then we define

$$||f||_{\infty} = \inf\{a \ge 0 : m(\{x \in X : |f(x)| > a\}) = 0\},\$$

with the convention that $\inf \emptyset = \infty$, and

$$L^{\infty} = L^{\infty}(X) = \{ f : X \to \mathbb{C} \text{ measuarable} : \|f\|_{\infty} < \infty \},\$$

with the usual convention that two functions that are equal a.e. define the same element of L^{∞} . Thus $f \in L^{\infty}$ if and only if there is a bounded function g such that f = g almost everywhere; we can take $g = f\chi_E$ where $E = \{x : |f(x)| \le ||f||_{\infty}\}$.

- 2. Let C([0,1]) denote the space of all continuous \mathbb{C} -valued functions on [0,1].
 - (a) Prove that C([0,1]) is complete under the uniform norm $||f||_u := \max_{x \in [0,1]} |f(x)|$.
 - (b) Prove that C([0,1]) is <u>not</u> complete under either the $L^1([0,1])$ or $L^2([0,1])$ norms.
- 3. Let $X \subseteq \mathbb{R}^n$ be measurable.
 - (a) i. Prove that if $m(X) < \infty$, then

$$L^{\infty}(X) \subset L^{2}(X) \subset L^{1}(X) \tag{1}$$

with strict inclusion in each case, and that for any measurable $f: X \to \mathbb{C}$ one in fact has

$$||f||_{L^1(X)} \le m(X)^{1/2} ||f||_{L^2(X)} \le m(X) ||f||_{L^{\infty}(X)}.$$

- ii. Give examples to show that no such result of the form (1) can hold if one drops the assumption that $m(x) < \infty$.
- (b) Prove that

$$\underbrace{L^1(X) \cap L^\infty(X) \subset L^2(X)}_{(\star)} \subset L^1(X) + L^\infty(X)$$

and that in addition to (\star) one in fact has

$$\|f\|_{L^{2}(X)} \leq \|f\|_{L^{1}(X)}^{1/2} \|f\|_{L^{\infty}(X)}^{1/2}$$

for any measurable function $f: X \to \mathbb{C}$.

4. Prove that

$$\ell^1(\mathbb{Z}) \subset \ell^2(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z})$$

with strict inclusion in each case, and that for any sequence $a = \{a_j\}_{j \in \mathbb{Z}}$ of complex numbers one in fact has

$$||a||_{\ell^{\infty}(\mathbb{Z})} \le ||a||_{\ell^{2}(\mathbb{Z})} \le ||a||_{\ell^{1}(\mathbb{Z})}.$$

Recall that for $p = 1, 2, \infty$ we define

$$\ell^{p}(\mathbb{Z}) = \{a = \{a_{j}\}_{j \in \mathbb{Z}} \subseteq \mathbb{C} : \|a\|_{\ell^{p}(\mathbb{Z})} < \infty\}$$

where

$$||a||_{\ell^{1}(\mathbb{Z})} = \sum_{j=-\infty}^{\infty} |a_{j}|, \quad ||a||_{\ell^{2}(\mathbb{Z})} = \left(\sum_{j=-\infty}^{\infty} |a_{j}|^{2}\right)^{1/2}, \text{ and } \quad ||a||_{\ell^{\infty}(\mathbb{Z})} = \sup_{j} |a_{j}|.$$

5. Let H be a Hilbert space with orthonormal basis $\{u_n\}_{n=1}^{\infty}$.

(a) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. Prove that

$$\sum_{n=1}^{\infty} a_n u_n \text{ converges in } H \iff \sum_{n=1}^{\infty} |a_n|^2 < \infty,$$

and moreover that if $\sum_{n=1}^{\infty} |a_n|^2 < \infty$, then $\left\|\sum_{n=1}^{\infty} a_n u_n\right\| = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2}.$

- (b) i. Is there a continuous linear functional L on H such that $L(u_n) = n^{-1}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
 - ii. Is there a continuous linear functional L on H such that $L(u_n) = n^{-1/2}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
- 6. Prove that if $f \in L^2(\mathbb{T}) := \{ f \in L^2([0,1]) : f(0) = f(1) \}$ and $\{ \widehat{f}(n) \}_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$, where

$$\widehat{f}(n) = \int_0^1 f(x) e^{-2\pi i n x} \, dx,$$

then the Nth partial sum of the Fourier series of f, namely

$$S_N f(x) = \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i n x}$$

converges uniformly to f(x) as $N \to \infty$ for almost every $x \in [0, 1]$ and for every $x \in [0, 1]$ if one makes the additional assumption that $f \in C(\mathbb{T})$, namely 1-periodic and continuous.

Recall that the sequence of functions $\{e_n\}_{n\in\mathbb{Z}}$, defined for each $n\in\mathbb{Z}$ and $x\in[0,1]$ by $e_n(x) = e^{2\pi i n x}$, forms an orthonormal basis for the Hilbert space $L^2([0,1])$ equipped with its usual inner product

$$\langle f,g \rangle = \int_0^1 f(x) \overline{g(x)} \, dx$$

and that (for each $n \in \mathbb{Z}$) the nth Fourier coefficient of f is defined to be $\widehat{f}(n) := \langle f, e_n \rangle$.

Extra Challenge Problems

Not to be handed in with the assignment

- 1. (a) Prove that if $f \in C^1(\mathbb{T})$, then $S_N f$ converges uniformly to f.
 - (b) Prove that if $f \in C(\mathbb{T})$ and $f' \in L^2(\mathbb{T})$, then $S_N f$ converges uniformly to f.

Both of these results in fact follow from the following deeper result:

Theorem 1 (Dini's Criterion). If, for some $x \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$, there exists $\delta > 0$ such that

$$\int_{|t| \le \delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \infty$$
⁽²⁾

then $S_N f(x)$ converges to f(x).

Note that if f is Hölder continuous at x, namely $|f(x+t) - f(x)| \leq C|t|^a$ for some a > 0, then f satisfies (2) for some $\delta > 0$. But, continuous functions need not satisfy (2) for any $\delta > 0$, in fact:

Theorem 2 (Du Bois-Reymond). There exist $f \in C(\mathbb{T})$ whose Fourier series diverges at a point.