Math 8100 Assignment 5 Lebesgue Integration II

Due date: Friday the 26th of September 2014

- (a) Give an example of a continuous function f in L¹(ℝ) for which f(x) → 0 as |x| → ∞.
 (b) Prove that if f ∈ L¹(ℝ) and uniformly continuous, then lim_{|x|→∞} f(x) = 0.
- 2. Prove that if $\int_E f = 0$ for all Lebesgue measurable subsets E of \mathbb{R}^n , then f = 0 almost everywhere.
- 3. Prove that if $f \in L^1(\mathbb{R})$, then $F(x) := \int_{-\infty}^x f(t) dt$ defines a uniformly continuous function on \mathbb{R} .
- 4. Recall that for a given $f \in L^1$, the Fourier transform of f is defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx.$$

Prove the so-called *Riemann-Lebesgue lemma*, namely that

$$\widehat{f}(\xi) \to 0 \text{ as } |\xi| \to \infty.$$

Hint: Write
$$\hat{f}(\xi) = \frac{1}{2} \int [f(x) - f(x - \xi')] e^{-2\pi i x \cdot \xi} dx$$
, where $\xi' = \frac{\xi}{2|\xi|^2}$.

5. A sequence $\{f_k\}$ of integrable functions on \mathbb{R}^n is said to *converge in measure* to f if for every $\varepsilon > 0$,

$$\lim_{k \to \infty} m(\{x \in \mathbb{R}^n : |f_k(x) - f(x)| \ge \varepsilon\}) = 0.$$

- (a) Prove that if $f_k \to f$ in L^1 then $f_k \to f$ in measure.
- (b) Give an example to show that the converse of Question 5a is false.
- (c) Prove that if we make the additional assumption that there exists an integrable function g such that $|f_k| \leq g$ for all k, then $f_k \to f$ in measure implies that
 - i. * (Bonus points) f ∈ L¹ Hint: First show that {f_k} contains a subsequence which converges to f almost everywhere.
 ii. f_k → f in L¹.

Hint: Try using absolute continuity and "small tails property" of the Lebesgue integral.

- 6. (a) (A Generalized Dominated Convergence Theorem) Let $\{g_n\}, \{h_n\} \subseteq L^1$ and $g, h \in L^1$ with $g_k \to g$ and $h_k \to h$ almost everywhere. Prove that if $|g_k| \leq h_k$ for all k and $\int h_k \to \int h$, then $\int g_k \to \int g$. *Hint: Applying Fatou's lemma to something like* $h_k - |g_k|$ *is an option, but not the only one.*
 - (b) Suppose $\{f_k\} \subseteq L^1$ and $f \in L^1$ and $f_k \to f$ almost everywhere. Prove that

$$\int |f - f_k| \to 0 \quad \Longleftrightarrow \quad \int |f_k| \to \int |f|.$$

Extra Challenge Problems

Not to be handed in with the assignment

1. Let $\Omega \subseteq \mathbb{R}^n$ be measurable with $m(\Omega) < \infty$. A set $\Phi \subseteq L^1(\Omega)$ is said to be uniformly integrable if, for any $\varepsilon > 0$ there exists $\delta > 0$ such that whenever $f \in \Phi$ and $E \subseteq \Omega$ is measurable with $m(E) < \delta$, then

$$\int_E |f(x)| \, dx < \varepsilon.$$

- (a) Prove that if $f \in L^1(\Omega)$ and $\{f_k\}$ is a uniformly integrable sequence of functions in $L^1(\Omega)$ such that $f_k \to f$ almost everywhere on Ω , then $f_k \to f$ in $L^1(\Omega)$.
- (b) Is it necessary to assume that $f \in L^1(\Omega)$?