Math 8100 Assignment 4 Lebesgue Integration

Due date: Friday the 19th of September 2014

Definition. Let E be a Lebesgue measurable subset of \mathbb{R}^n .

We say that a measurable function $f: E \to \mathbb{C}$ is integrable on E if $\int_E |f(x)| dx < \infty$.

- 1. Let f be an integrable function on \mathbb{R}^n .
 - (a) Prove that $\{x: |f(x)| = \infty\}$ has measure equal to zero.
 - (b) Let $\varepsilon > 0$. Prove that there exists a measurable set E with $m(E) < \infty$ for which

$$\int_{E} |f| > \left(\int |f| \right) - \varepsilon.$$

2. Suppose $f \ge 0$, and let $E_{2^k} = \{x : f(x) > 2^k\}$ and $F_k = \{x : 2^k < f(x) \le 2^{k+1}\}$. If f is finite almost everywhere, then $\bigcup_{k=-\infty}^{\infty} F_k = \{f(x) > 0\}$, and the sets F_k are disjoint. Prove that

$$\int |f(x)| < \infty \iff \sum_{k=-\infty}^{\infty} 2^k m(F_k) < \infty \iff \sum_{k=-\infty}^{\infty} 2^k m(E_{2^k}) < \infty.$$

- 3. Prove the following:
 - (a) $\int_{\{x \in \mathbb{R}^n : |x| \le 1\}} |x|^{-p} \, dx < \infty \quad \text{if and only if} \quad p < n.$
 - (b) $\int_{\{x\in\mathbb{R}^n\,:\,|x|\geq 1\}} |x|^{-p}\,dx <\infty \quad \text{if and only if} \quad p>n.$

Hint: One possible approach is to use the first equivalence in Question 2 above. I suggest however that in this case you also try simply writing \mathbb{R}^n as a disjoint union of the annuli $A_k = \{2^k < |x| \le 2^{k+1}\}$.

4. Let $\{f_n\}$ be a sequence of measurable functions on \mathbb{R} such that $\lim_{n\to\infty} f_n(x) = g(x)$ a.e. in \mathbb{R} ,

$$\lim_{n\to\infty}\int |f_n(x)|\,dx=A\qquad\text{and}\qquad\int |g(x)|\,dx=B.$$

(a) Prove that

$$\lim_{n \to \infty} \int |f_n(x) - g(x)| \, dx = A - B.$$

- (b) Give an example of a sequence $\{f_n\}$ of such functions for which $A \neq B$.
- 5. Given any integrable function f on \mathbb{R}^n , the Fourier transform of f is defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi} dx$$

1

where $x \cdot \xi = x_1 \xi_1 + \dots + x_n \xi_n$. Show that \widehat{f} is a bounded continuous function of ξ .

6. (a) Suppose that f(x) and xf(x) are both integrable functions on \mathbb{R} . Prove that the function

$$F(t) = \int_{\mathbb{R}} f(x) \cos(tx) dx.$$

is differentiable at every t and find a formula for F'(t).

(b) Giving complete justification, evaluate

$$\lim_{t \to 0} \int_0^1 \frac{e^{t\sqrt{x}} - 1}{t} \, dx.$$

Extra Challenge Problems

Not to be handed in with the assignment

- 1. Assume Fatou's theorem and deduce the monotone convergence theorem from it.
- 2. Let E be a Lebesgue measurable subset of \mathbb{R}^n and $f: E \times [a,b] \to \mathbb{R}$, with $-\infty < a < b < \infty$, be such that for each $t \in [a,b]$, f(x,t) is an integrable function of x. Let $F(t) = \int f(x,t) \, dx$.
 - (a) Suppose that there exists an integrable function g such that $|f(x,t)| \leq g(x)$ for all x and t. Prove that if $\lim_{t\to t_0} f(x,t) = f(x,t_0)$ for every x, then $\lim_{t\to t_0} F(t) = F(t_0)$. In particular, if f is continuous in t for each fixed x, then F is continuous.
 - (b) Suppose that $\partial f(x,t)/\partial t$ exists and there exists an integrable function g such that $|\partial f(x,t)/\partial t| \le g(x)$ for all x and t. Prove that F is differentiable and

$$F'(t) = \frac{d}{dt} \int f(x,t) dx = \int \frac{\partial f(x,t)}{\partial t} dx.$$

Hint: Use the dominated convergence theorem with any sequence $\{t_k\}$ in [a,b] converging to t_0 .