Math 8100 Assignment 2 Lebesgue measure and outer measure II

Due date: Friday the 5th of September 2014

- 1. (a) Let X be an uncountable set and $\mathcal{A} = \{E \subseteq X : E \text{ is countable or } E^c \text{ is countable}\}$.
 - i. Verify that \mathcal{A} is a σ -algebra, called the σ -algebra of countable or co-countable sets.
 - ii. Verify that the function μ on \mathcal{M} defined by $\mu(E) = 0$ if E is countable and $\mu(E) = 1$ if E^c is countable is a measure on \mathcal{A} .
 - (b) Let X be an infinite set. Defined $\mu(E) = 0$ if E is finite and $\mu(E) = \infty$ if E is infinite. Verify that μ is a finitely additive measure on $\mathcal{P}(X)$, but not a measure.
 - (c) Let (X, \mathcal{M}) be a measurable space endowed with a measure μ and $E \in \mathcal{M}$. Define $\mu_E(F) = \mu(E \cap F)$ for all $F \in \mathcal{M}$. Prove that μ_E defines a measure on \mathcal{M} .
- 2. Let $E \subseteq \mathbb{R}$ with $m_*(E) = 0$. Show that the set $E^2 = \{x^2 \mid x \in E\}$ also Lebesgue outer measure zero. [To what extent can you generalize this result?]
- 3. (a) The Borel-Cantelli Lemma. Suppose $\{E_j\}_{j=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^n and that

$$\sum_{j=1}^{\infty} m(E_j) < \infty.$$

Let

$$E = \limsup_{j \to \infty} E_j := \{ x \in \mathbb{R}^n : x \in E_j, \text{ for infinitely many } j \}.$$

Show that E is measurable and that m(E) = 0. Hint: Write $E = \bigcap_{k=1}^{\infty} \bigcup_{j \ge k} E_j$.

(b) Given any irrational x one can show (using the pigeonhole principle, for example) that there exists infinitely many fractions a/q, with a and q relatively prime integers, such that

$$\left|x - \frac{a}{q}\right| \le \frac{1}{q^2}$$

However, show that the set of those $x \in \mathbb{R}$ such that there exists infinitely many fractions a/q, with a and q relatively prime integers, such that

$$\left|x - \frac{a}{q}\right| \le \frac{1}{q^3}$$

is a set of Lebesgue measure zero.

- 4. Prove that any $E \subset \mathbb{R}$ with $m_*(E) > 0$ necessarily contains a non-measurable set.
- 5. This question deals with the G_{δ} and F_{σ} sets that were discussed in lecture (the definitions can also be found in the text).
 - (a) Show that every closed set is a G_{δ} set and every open set is an F_{σ} set. Hint: If F is closed, consider $O_n = \{x : \inf_{y \in F} |x - y| < 1/n\}.$
 - (b) Give an example of an F_{σ} set which is not a G_{δ} set. Hint: This is not so easy... You might want to use the Baire Category Theorem.
 - (c) Give an example of a Borel set which is neither an F_{σ} nor a G_{δ} set.

6. A set $E \subseteq \mathbb{R}^n$ is said to be *Carathéodory measurable* if $m_*(A) = m_*(A \cap E) + m_*(E^c \cap A)$ for every set $A \subseteq \mathbb{R}^n$, where m_* denotes Lebesgue outer measure (as defined in class).

Prove that a set $E \subseteq \mathbb{R}^n$ is Lebegue measurable if and only if E is Carathéodory measurable.

Hint: If E is Lebesgue measurable and A is any set, choose a G_{δ} set V such that $A \subseteq V$ and $m_*(A) = m(V)$. Conversely, if E is Carathéodory measurable and $m_*(E) < \infty$, choose a G_{δ} set V with $E \subseteq V$ and $m_*(E) = m(V)$. Then $m_*(V \setminus E) = 0$.

Extra Challenge Problems

Not to be handed in with the assignment

- 1. If I is a bounded interval and $\alpha \in (0, 1)$, let us call the open interval with the same midpoint as I and length equal to α times the length of I the "open middle α th" of I. If $\{\alpha_j\}_{j=1}^{\infty}$ is any sequence of numbers in (0, 1), then, we can define a decreasing sequence $\{K_j\}$ of closed sets as follows: $K_0 = [0, 1]$, and K_j is obtained by removing the the open middle α_j th from each of the intervals that make up K_{j-1} . The resulting limiting set $K = \bigcap_{j=1}^{\infty} K_j$ is called a **generalized Cantor set**.
 - (a) Suppose $\{\alpha_j\}_{j=1}^{\infty}$ is any sequence of numbers in (0, 1).
 - i. Prove that $\prod_{j=1}^{\infty} (1 \alpha_j) > 0$ if and only if $\sum_{j=1}^{\infty} \alpha_j < \infty$.
 - ii. Given $\beta \in (0, 1)$, exhibit a sequence $\{\alpha_j\}$ such that $\prod_{j=1}^{\infty} (1 \alpha_j) = \beta$.
 - (b) Given $\beta \in (0, 1)$, construct an open set G in [0, 1] whose boundary has Lebesgue measure β . Hint: Every closed nowhere dense set is the boundary of an open set.