Math 8100 Assignment 11

Abstract Measure and Integration

Due date: Wednesday the 10th of December 2014

Throughout this assignment (X, \mathcal{M}, μ) denotes a measure space with μ an *actual* measure.

- 1. Let X be a metric space and μ be a Borel measure on X that assigns a finite measure to all bounded Borel sets. Prove that if $\{F_n\}_{n=1}^{\infty}$ is a sequence of closed sets in X, then for any $\varepsilon > 0$ there exists a closed set $F \subseteq \bigcup_{n=1}^{\infty} F_n$ with the property that $\mu(\bigcup_{n=1}^{\infty} F_n \setminus F) < \varepsilon$.
- 2. Let $X = \mathbb{R}$ and $\mathcal{M} = \mathcal{B}_{\mathbb{R}}$, in other words let μ be a Borel measure on \mathbb{R} . Prove that if μ has the additional property that it is finite on all bounded Borel sets, then the function $F : \mathbb{R} \to \mathbb{R}$ defined for each $x \in \mathbb{R}$ by

$$F(x) = \begin{cases} \mu((0, x]) & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -\mu((x, 0]) & \text{if } x < 0, \end{cases}$$

is both increasing and right continuous on \mathbb{R} .

- 3. Suppose that $\mu(X) < \infty$ and $f \in L^1(X, \mathcal{M}, \mu)$.
 - (a) Prove that if

$$0 \leq \frac{1}{\mu(E)} \int_E f \, d\mu \leq 1$$

for all $E \in \mathcal{M}$ with $\mu(E) > 0$, then $0 \le f \le 1$ almost everywhere.

(b) Prove that if

$$\left|\frac{1}{\mu(E)}\int_E f\,d\mu\right| \le 1$$

for all $E \in \mathcal{M}$ with $\mu(E) > 0$, then $|f| \leq 1$ almost everywhere.

- 4. Let ν be complex measure on (X, \mathcal{M}) .
 - (a) Prove that if ν is absolutely continuous with respect to μ if and only if its *total variation* $|\nu|$ is absolutely continuous with respect to μ , in other words verify that

$$\nu \ll \mu \iff |\nu| \ll \mu.$$

- (b) Prove that $\nu \ll \mu$ if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|\nu(E)| < \varepsilon$ for all $E \in \mathcal{M}$ with $\mu(E) < \delta$.
- 5. Let ν be complex measure on (X, \mathcal{M}) .
 - (a) (Polar representation of ν) Prove that there exists a measurable function f such that |f| = 1 on X and

$$\nu(E) = \int_E f \, d|\nu$$

for all $E \in \mathcal{M}$ (in other words $d\nu = f d|\nu|$).

(b) Deduce from part (a) above that if $g \in L^1(X, \mathcal{M}, \mu)$ and

$$\nu(E) = \int_E g \, d\mu$$

for all $E \in \mathcal{M}$ (in other words $d\nu = g d\mu$), then

$$|\nu|(E) = \int_E |g| \, d\mu,$$

for all $E \in \mathcal{M}$ (in other words $d|\nu| = |g| d\mu$).

- 6. For review, prove the following standard results.
 - (a) i. (Constructing outer measures) Let $\mathcal{E} \subseteq \mathcal{P}(X)$ be a collection of "elementary" sets and $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset, X \in \mathcal{E}$ and $\rho(\emptyset) = 0$. If we now define

$$\mu_*(E) = \inf \left\{ \sum_{j=1}^{\infty} \rho(E_j) : E_j \in \mathcal{E} \text{ and } E \subseteq \bigcup_{j=1}^{\infty} E_j \right\}$$

for each $E \in \mathcal{P}(X)$, then μ_* defines an outer measure.

ii. (Continuity from below) If $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{M}$ and $E_1 \subseteq E_2 \subseteq \cdots$, then

$$\mu\Big(\bigcup_{n=1}^{\infty} E_n\Big) = \lim_{n \to \infty} \mu(E_n).$$

- iii. (Approximation by simple functions) If $f \in L^+(X, \mathcal{M})$, then there exists a sequence $\{\phi_n\}_{n=1}^{\infty}$ of simple functions such that $0 \leq \phi_1 \leq \phi_2 \leq \cdots \leq f$, $\phi_n \to f$ pointwise, and $\phi_n \to f$ uniformly on any set on which f is bounded.
- iv. If $f \in L^+(X, \mathcal{M})$, then

 $\int f \, d\mu = 0 \iff f = 0 \text{ almost everywhere (with respect to the measure } \mu).$

(b) i. (Monotone Convergence Theorem) If $\{f_n\}_{n=1}^{\infty}$ is a sequence in $L^+(X, \mathcal{M})$ with $f_n(x)$ increasing to f(x) for almost every x, then

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

ii. (Interchanging sums and integrals of L^+ functions) If $\{f_n\}_{n=1}^{\infty}$ is a finite or infinite sequence in $L^+(X, \mathcal{M})$, then

$$\int \left(\sum_{n=1}^{\infty} f_n\right) d\mu = \sum_{n=1}^{\infty} \left(\int f_n \, d\mu\right).$$

iii. (Borel-Cantelli Lemma) If $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{M}$ with the property that $\sum_{n=1}^{\infty} \mu(E_n) < \infty$, then almost all $x \in X$ lie in at most finitely many of the sets E_n . In other words

$$\mu\left(\limsup_{n \to \infty} E_n\right) = \mu\left(\bigcap_{m=1}^{\infty} \bigcup_{n \ge m} E_n\right) = 0$$

iv. (Fatou's Lemma) If $\{f_n\}_{n=1}^{\infty}$ is a sequence in $L^+(X, \mathcal{M})$, then

$$\int \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu.$$

(c) i. If $f \in L^1(X, \mathcal{M}, \mu)$, then

$$\left|\int f\,d\mu\right| \leq \int |f|\,d\mu.$$

ii. (Dominated Convergence Theorem) If $\{f_n\}_{n=1}^{\infty}$ is a sequence in $L^1(X, \mathcal{M}, \mu)$ with the property that $f_n \to f$ almost everywhere and there exists a non-negative $g \in L^1(X, \mathcal{M}, \mu)$ such that $|f_n| \leq g$ almost everywhere, then

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

iii. (Interchanging sums and integrals of L^1 functions) If $\{f_n\}_{n=1}^{\infty}$ is a sequence in $L^1(X, \mathcal{M}, \mu)$ such that $\sum_{n=1}^{\infty} \left(\int |f_n| \, d\mu \right) < \infty$, then $\sum_{n=1}^{\infty} f_n$ converges almost everywhere to a function in $L^1(X, \mathcal{M}, \mu)$, and $\int \left(\sum_{n=1}^{\infty} f_n \right) \, d\mu = \sum_{n=1}^{\infty} \left(\int f_n \, d\mu \right)$

$$\int \left(\sum_{n=1}^{\infty} f_n\right) d\mu = \sum_{n=1}^{\infty} \left(\int f_n \, d\mu\right).$$

iv. Simple functions are dense in $L^1(X, \mathcal{M}, \mu)$ in the L^1 -metric.

Extra Challenge Problems

Not to be handed in with the assignment

- 1. Prove that the total variation $|\nu|$ of a complex measure ν on (X, \mathcal{M}) is an actual measure on (X, \mathcal{M}) with the property that $|\nu|(X) < \infty$.
- 2. Let ν be a *real* measure on (X, \mathcal{M}) .
 - (a) (Hahn Decomposition Theorem) Prove that there exists sets $A, B \in \mathcal{M}$ such that $A \cup B = X$, $A \cap B = \emptyset$, and such that the positive and negative variations

$$\nu^+ := \frac{|\nu| + \nu}{2} \quad \text{and} \quad \nu^- := \frac{|\nu| - \nu}{2}$$

of ν satisfy

$$\nu^+(E) = \mu(A \cap E)$$
 and $\nu^-(E) = \mu(B \cap E)$

for all $E \in \mathcal{M}$.

(b) (Jordon Decomposition Theorem) Deduce from part (a) above that if

$$\nu = \mu_1 - \mu_2$$

where μ_1 and μ_2 are actual measures on (X, \mathcal{M}) , then $\mu_1 \ge \nu^+$ and $\mu_2 \ge \nu^-$.