Math 8100 Assignment 10 A Bit of Everything

Due date: Friday the 21st of November 2014

1. Let $X \subseteq \mathbb{R}^n$ be Lebesgue measurable. Prove that if $L^2(X) \subseteq L^1(X)$, then $m(X) < \infty$.

2. Let f and g be two non-negative Lebesgue measurable functions on $[0,\infty)$. Suppose that

$$A := \int_0^\infty f(y) y^{-1/2} dy < \infty$$
 and $B := \left(\int_0^\infty |g(y)|^2 dy \right)^{1/2} < \infty$

Prove that

$$\int_0^\infty \left(\int_0^x f(y) \, dy\right) \frac{g(x)}{x} \, dx \le AB$$

- 3. Let $\{f_k\}$ be any sequence of functions in $L^2([0,1])$ satisfying $||f_k||_2 \leq 1$ for all $k \in \mathbb{N}$.
 - (a) i. Prove that if $f_k \to f$ either a.e. on [0, 1] or in $L^1([0, 1])$, then $f \in L^2([0, 1])$ with $||f||_2 \le 1$. ii. Do either of the above hypotheses guarantee that $f_k \to f$ in $L^2([0, 1])$?
 - (b) Prove that if $f_k \to f$ a.e. on [0, 1], then this in fact implies that $f_k \to f$ in $L^1([0, 1])$.
- 4. For each $1 \leq p \leq \infty$, define $\Lambda_p : L^p([0,1]) \to \mathbb{R}$ by

$$\Lambda_p(f) = \int_0^1 x^2 f(x) \, dx$$

Explain why Λ_p is a continuous linear functional and compute its norm (in terms of p).

5. Let $1 \le p \le \infty$. Prove that if $\{f_k\}_{k=1}^{\infty}$ is a sequence of functions in $L^p(\mathbb{R}^n)$ with the property that

$$\sum_{k=1}^{\infty} \|f_k\|_p < \infty,$$

then $\sum f_k$ converges almost everywhere to an $L^p(\mathbb{R}^n)$ function with

$$\left\|\sum_{k=1}^{\infty} f_k\right\|_p \le \sum_{k=1}^{\infty} \|f_k\|_p$$

- 6. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) Let g be a non-negative measurable function on X and $\nu_g : \mathcal{M} \to [0, \infty]$ be a set function defined for each $E \in \mathcal{M}$ by

$$\nu_g(E) := \int_E g \, d\mu$$

Prove that ν_g defines a measure on (X, \mathcal{M}) which is absolutely continuous with respect to μ , and that

$$\int_X f \, d\nu_g = \int_X f g \, d\mu$$

for any non-negative measurable function f on X.

(b) Let $g \in L^1(X, \mu)$ and $\nu_g : \mathcal{M} \to \mathbb{C}$ be a set function defined for each $E \in \mathcal{M}$ by

$$\nu_g(E) := \int_E g \, d\mu$$

Prove that ν_g defines a complex measure on (X, \mathcal{M}) which is absolutely continuous with respect to μ .

Extra Challenge Problems

Not to be handed in with the assignment

If $f \in L^1(\mathbb{T}) := \{f \in L^1([0,1]) : f(0) = f(1)\}$, then the *N*th partial sum of the Fourier series of f, is defined be

$$S_N f(x) = \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i nx}$$

where

$$\widehat{f}(n) = \int_0^1 f(x) e^{-2\pi i n x} \, dx,$$

for each $n \in \mathbb{Z}$. It is straightforward to see that one can re-express the Nth partial sums as follows:

$$S_N f(x) = f * D_N(x) := \int_0^1 f(y) D_N(x-y) \, dy$$

where

$$D_N(x) := \sum_{|n| \le N} e^{2\pi i n x} = \frac{\sin((2N+1)\pi x)}{\sin \pi x} \qquad \text{(Dirichlet kernel)}.$$

1. Consider the Cesàro means of the $S_N f$, namely

$$\sigma_N f := \frac{1}{N} \sum_{n=0}^{N-1} S_n f = f * F_N$$

where

$$F_N(x) := \frac{1}{N} \sum_{n=0}^{N-1} D_n(x) = \frac{1}{N} \left(\frac{\sin(N\pi x)}{\sin \pi x} \right)^2 \qquad \text{(Fejér kernel)}.$$

(a) Verify that the Fejér kernel satisfies the following basic properties:

i.
$$0 \leq F_N(x) \leq C \frac{1}{N} \min\left\{N^2, \frac{1}{|x|^2}\right\}$$
 for some constant $C > 0$ and all $x \in [0, 1]$,
ii. $\int_0^1 F_N(x) dx = 1$,
iii. $\lim_{N \to \infty} \int_{\delta \leq |x| \leq \frac{1}{2}} F_N(x) dx = 0$ for any choice of $\delta > 0$.
[Note also that $\widehat{F_N}(n) = \max\left\{1 - \frac{|n|}{N}, 0\right\}$ for all $n \in \mathbb{Z}$.]

(b) Use the approximation to the identity-type properties above to prove the following

Theorem 1 (Fejér's Theorem). Let $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

- (i) (Classical version) If $f \in C(\mathbb{T})$, then $\sigma_N f \to f$ uniformly on \mathbb{T} as $N \to \infty$.
- (ii) (L¹-version) If $f \in L^1(\mathbb{T})$, then $\sigma_N f \to f$ in $L^1(\mathbb{T})$ as $N \to \infty$.

[It is also true that if $f \in L^p(\mathbb{T})$ with $1 \leq p < \infty$, then $\sigma_N f \to f$ in $L^p(\mathbb{T})$ as $N \to \infty$.]

(c) Verify that Theorem 1 gives a new proof that Trigonometric polynomials are dense in both C(T) and in L¹(T), and that Theorem 1 (ii) in particular has the following important (new) consequence:
 Corollary 1.

If $f \in L^1(\mathbb{T})$ and $\widehat{f}(n) = 0$ for all $n \in \mathbb{Z}$, then f(x) = 0 for almost every $x \in \mathbb{T}$.

2. Use Corollary 1 above to prove the following strengthening of Question 6 on Homework Assignment 9:

Theorem 2 (Periodic analogue of the Fourier inversion formula).

If $f \in L^1(\mathbb{T})$ and $\{\widehat{f}(n)\} \in \ell^1(\mathbb{Z})$, then $S_N f(x) \to f(x)$ for almost every $x \in \mathbb{T}$ as $N \to \infty$.