
Math 8100 Assignment 10

A Bit of Everything

Due date: Friday the 21st of November 2014

1. Let X ⊆ Rn be Lebesgue measurable. Prove that if L2(X) ⊆ L1(X), then m(X) <∞.

2. Let f and g be two non-negative Lebesgue measurable functions on [0,∞). Suppose that

A :=

∫ ∞
0

f(y) y−1/2dy <∞ and B :=

(∫ ∞
0

|g(y)|2dy
)1/2

<∞

Prove that ∫ ∞
0

(∫ x

0

f(y) dy

)
g(x)

x
dx ≤ AB

3. Let {fk} be any sequence of functions in L2([0, 1]) satisfying ‖fk‖2 ≤ 1 for all k ∈ N.

(a) i. Prove that if fk → f either a.e. on [0, 1] or in L1([0, 1]), then f ∈ L2([0, 1]) with ‖f‖2 ≤ 1.

ii. Do either of the above hypotheses guarantee that fk → f in L2([0, 1])?

(b) Prove that if fk → f a.e. on [0, 1], then this in fact implies that fk → f in L1([0, 1]).

4. For each 1 ≤ p ≤ ∞, define Λp : Lp([0, 1])→ R by

Λp(f) =

∫ 1

0

x2f(x) dx.

Explain why Λp is a continuous linear functional and compute its norm (in terms of p).

5. Let 1 ≤ p ≤ ∞. Prove that if {fk}∞k=1 is a sequence of functions in Lp(Rn) with the property that

∞∑
k=1

‖fk‖p <∞,

then
∑
fk converges almost everywhere to an Lp(Rn) function with∥∥∥ ∞∑

k=1

fk

∥∥∥
p
≤
∞∑
k=1

‖fk‖p.

6. Let (X,M, µ) be a measure space.

(a) Let g be a non-negative measurable function on X and νg :M→ [0,∞] be a set function defined
for each E ∈M by

νg(E) :=

∫
E

g dµ

Prove that νg defines a measure on (X,M) which is absolutely continuous with respect to µ, and
that ∫

X

f dνg =

∫
X

fg dµ

for any non-negative measurable function f on X.

(b) Let g ∈ L1(X,µ) and νg :M→ C be a set function defined for each E ∈M by

νg(E) :=

∫
E

g dµ.

Prove that νg defines a complex measure on (X,M) which is absolutely continuous with respect
to µ.
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Extra Challenge Problems
Not to be handed in with the assignment

If f ∈ L1(T) := {f ∈ L1([0, 1]) : f(0) = f(1)}, then the N th partial sum of the Fourier series of f , is
defined be

SNf(x) =
∑
|n|≤N

f̂(n)e2πinx

where

f̂(n) =

∫ 1

0

f(x)e−2πinx dx,

for each n ∈ Z. It is straightforward to see that one can re-express the Nth partial sums as follows:

SNf(x) = f ∗DN (x) :=

∫ 1

0

f(y)DN (x− y) dy

where

DN (x) :=
∑
|n|≤N

e2πinx =
sin((2N + 1)πx)

sinπx
(Dirichlet kernel).

1. Consider the Cesàro means of the SNf , namely

σNf :=
1

N

N−1∑
n=0

Snf = f ∗ FN

where

FN (x) :=
1

N

N−1∑
n=0

Dn(x) =
1

N

( sin(Nπx)

sinπx

)2
(Fejér kernel).

(a) Verify that the Fejér kernel satisfies the following basic properties:

i. 0 ≤ FN (x) ≤ C 1

N
min

{
N2,

1

|x|2
}

for some constant C > 0 and all x ∈ [0, 1],

ii.

∫ 1

0

FN (x) dx = 1,

iii. lim
N→∞

∫
δ≤|x|≤ 1

2

FN (x) dx = 0 for any choice of δ > 0.

[Note also that F̂N (n) = max
{

1− |n|
N
, 0
}

for all n ∈ Z.]

(b) Use the approximation to the identity-type properties above to prove the following

Theorem 1 (Fejér’s Theorem). Let T = R/Z.

(i) (Classical version) If f ∈ C(T), then σNf → f uniformly on T as N →∞.

(ii) (L1-version) If f ∈ L1(T), then σNf → f in L1(T) as N →∞.

[It is also true that if f ∈ Lp(T) with 1 ≤ p <∞, then σNf → f in Lp(T) as N →∞.]

(c) Verify that Theorem 1 gives a new proof that Trigonometric polynomials are dense in both C(T)
and in L1(T), and that Theorem 1 (ii) in particular has the following important (new) consequence:

Corollary 1.

If f ∈ L1(T) and f̂(n) = 0 for all n ∈ Z, then f(x) = 0 for almost every x ∈ T.

2. Use Corollary 1 above to prove the following strengthening of Question 6 on Homework Assignment 9:

Theorem 2 (Periodic analogue of the Fourier inversion formula).

If f ∈ L1(T) and {f̂(n)} ∈ `1(Z), then SNf(x)→ f(x) for almost every x ∈ T as N →∞.
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