Math 8100 Assignment 1

Lebesgue measure and outer measure

Due date: Wednesday the 27th of August 2014

- 1. The **Cantor set** C is the set of all $x \in [0,1]$ that have a ternary expansion $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ with $a_k \neq 1$ for all k. Thus C is obtained from [0,1] by removing the open middle third $(\frac{1}{3}, \frac{2}{3})$, then removing the open middle thirds $(\frac{1}{9}, \frac{2}{9})$ and $(\frac{7}{9}, \frac{8}{9})$ of the two remaining intervals, and so forth.
 - (a) Find a real number x belonging to the Cantor set which is not the endpoint of one of the intervals used in its construction.
 - (b) Prove that \mathcal{C} is compact, nowhere dense, totally disconnected, and perfect.
 - (c) Prove that $m_*(\mathcal{C}) = 0$.
 - (d) Prove that C is uncountable by showing that the function $f(x) = \sum_{k=1}^{\infty} b_k 2^{-k}$ where $b_k = a_k/2$, maps C onto [0, 1].
- 2. Prove that if E_1 and E_2 are measurable subsets of \mathbb{R}^n , then

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$$

- 3. Suppose that $A \subseteq E \subseteq B$, where A and B are Lebesgue measurable subsets on \mathbb{R}^n .
 - (a) Prove that if $m(A) = m(B) < \infty$, then E is measurable.
 - (b) Give an example showing that the same conclusion does not hold if A and B have infinite measure.
- 4. Suppose A and B are a pair of compact subsets of \mathbb{R}^n with $A \subseteq B$, and let a = m(A) and b = m(B). Prove that for any c with a < c < b, there is a compact set E with $A \subseteq E \subseteq B$ and m(E) = c. Hint: As an example, if n = 1 and E is a measurable subset of [0, 1], consider $m(E \cap [0, t])$ as a function of t.
- 5. The outer Jordan content $J_*(E)$ of a set E in \mathbb{R} is defined by

$$J_*(E) = \inf \sum_{j=1}^N |I_j|,$$

where the infimum is taken over every *finite* covering $E \subseteq \bigcup_{j=1}^{N} I_j$, by intervals I_j .

- (a) Prove that $J_*(E) = J_*(\overline{E})$ for every set E (here \overline{E} denotes the closure of E).
- (b) Exhibit a countable subset $E \subseteq [0, 1]$ such that $J_*(E) = 1$ while $m_*(E) = 0$.
- 6. Let \mathcal{N} denote the non-measurable subset of [0,1] that was constructed in lecture.
 - (a) Prove that if E is a measurable subset of \mathcal{N} , then m(E) = 0.
 - (b) Show that $m_*([0,1] \setminus \mathcal{N}) = 1$ [*Hint: Argue by contradiction and pick an open set* G such that $[0,1] \setminus \mathcal{N} \subseteq G \subseteq [0,1]$ with $m_*(G) \leq 1 - \varepsilon$.]
 - (c) Conclude that there exists *disjoint* sets $E_1 \subseteq [0,1]$ and $E_2 \subseteq [0,1]$ for which

$$m_*(E_1 \cup E_2) \neq m_*(E_1) + m_*(E_2)$$

Extra Challenge Problems

Not to be handed in with the assignment

1. Let C denote the usual (middle-third) Cantor set. Prove that C + C = [0, 2].

[*Hint: Consider the intersection of the set* $C \times C \subset \mathbb{R}^2$ and the family of lines $\{x + y = c \mid c \in [0, 2]\}$ and use the property of nested compact sets.]

2. Complete the following outline to prove that a bounded function on an interval [a, b] is Riemann integrable if and only if its set of discontinuities has measure zero.

Let f be a bounded function on a compact interval [a, b] and

$$\operatorname{osc}(f,c) = \lim_{\delta \to 0} \sup_{x,y \in B_{\delta}(c) \cap [a,b]} |f(x) - f(y)|$$

define the oscillation of f at c. Clearly, f is continuous at $c \in [a, b]$ if and only if osc(f, c) = 0.

- (a) Let $A_{\varepsilon} = \{c \in [a, b] : \operatorname{osc}(f, c) \ge \varepsilon\}$. Prove that for every $\varepsilon > 0$, the set A_{ε} is compact.
- (b) Prove that if the set of discontinuities of f has measure zero, then f is Riemann integrable. [Hint: Let $\varepsilon > 0$. Cover A_{ε} by a finite number of open intervals whose total length is $\leq \varepsilon$. Select and appropriate partition of [a, b] and estimate the difference between the upper and lower sums of f over this partition.]
- (c) Prove that if f is Riemann integrable on [a, b], then its set of discontinuities has measure zero. [*Hint: The set of discontinuities of f is contained in* U_n A_{1/n}. Given ε > 0, choose a partition P such that U(f, P) − L(f, P) < ε/n. Show that the total length of the intervals in P whose interiors intersect A_{1/n} is ≤ ε.]