Math 8100 Final Exam

Wednesday the 17th of December 2014

The five problems on this exam have equal weighting.

1. Prove that if $f \in L^2([0,1])$ and

$$\int_0^1 f(x) \, x^n \, dx = 0$$

for all non-negative integers n, then f(x) = 0 for almost every $x \in [0, 1]$.

2. Let μ be a Borel measure on \mathbb{R}^n with the property that for any given $\varepsilon > 0$ and Borel set $E \subseteq \mathbb{R}^n$, there always exists an open set G such that $E \subseteq G$ and $\mu(G \setminus E) < \varepsilon$. Prove that

$$\iota(E) = \sup \left\{ \mu(K) : K \subseteq E \text{ compact} \right\}$$

for all Borel sets $E \subseteq \mathbb{R}^n$.

- 3. Let (X, \mathcal{M}) be a measurable space.
 - (a) Prove that if μ is a measure on (X, \mathcal{M}) and $f: X \to \mathbb{R}$ is a function in $L^1(\mu)$, then

$$f \ge 0$$
 almost everywhere $\iff \int_E f \, d\mu \ge 0$ for all $E \in \mathcal{M}$.

(b) Let μ_1 and μ_2 be measures on (X, \mathcal{M}) and $f_1, f_2 : X \to \mathbb{R}$ functions in $L^1(\mu_1)$ and $L^1(\mu_2)$ respectively. Prove that if

$$\int_{E} f_1 d\mu_1 = \int_{E} f_2 d\mu_2 \text{ for all } E \in \mathcal{M},$$
$$\int |f_1| d\mu_1 = \int |f_2| d\mu_2 \text{ for all } E \in \mathcal{M}$$

then

$$\int_E |f_1| \, d\mu_1 = \int_E |f_2| \, d\mu_2 \quad \text{for all } E \in \mathcal{M}.$$

- 4. Suppose F is a closed set in \mathbb{R} , whose complement has finite Lebesgue measure, and let $\delta(x)$ denote the distance from x to F, namely $\delta(x) := \inf\{|x - y| : y \in F\}.$
 - (a) Prove that δ satisfies the Lipschitz condition $|\delta(x) \delta(y)| \leq |x y|$ for all $x, y \in \mathbb{R}$.
 - (b) Consider

$$I(x):=\int_{\mathbb{R}}\frac{\delta(y)}{|x-y|^2}\,dy$$

i. Show that
$$I(x) = \infty$$
 for each $x \notin F$.
ii. Show that $\int_F I(x) dx < \infty$ and conclude that $I(x) < \infty$ for almost every $x \in F$.

- 5. Consider the Hilbert space $L^2([0,\infty),\mu)$, with μ the Borel measure on $[0,\infty)$ defined by $d\mu = e^{-x} dx$.
 - (a) Apply the Gram-Schmidt process to $1, x, x^2 \in L^2([0, \infty), \mu)$ to obtain the orthonormal polynomials

$$L_0(x) = 1$$
, $L_1(x) = x - 1$, $L_2(x) = (x^2 - 4x + 2)/2$.

Hint: First verify that $\int_0^\infty x^n d\mu = n!$ *for all non-negative integers n.*

(b) Find

$$\max \int_0^\infty x^2 g(x) \, d\mu$$

where q is subject to the restrictions

$$\int_0^\infty g(x) \, d\mu = \int_0^\infty x \, g(x) \, d\mu = 0 \text{ and } \int_0^\infty |g(x)|^2 \, d\mu = 1.$$