Math 8100 Exam 2

Wednesday the 3rd of December 2014

Answer any <u>THREE</u> of the following four problems

- 1. Let X be a measurable subset of \mathbb{R}^n and $L^2(X)^*$ denote the *dual space* of $L^2(X)$, namely the space of all *continuous linear functional* on $L^2(X)$.
 - (a) Let $g \in L^2(X)$. Prove that the mapping $\Lambda_g : L^2(X) \to \mathbb{C}$ defined by

$$\Lambda_g(f):=\int_X f\overline{g}$$

for each $f \in L^2(X)$ defines an element of $L^2(X)^*$ with operator norm $\|\Lambda_g\|_{L^2(X)^*} = \|g\|_{L^2(X)}$. (b) Let $\Lambda \in L^2(X)^*$.

- i. Verify that $M := \{f \in L^2(X) : \Lambda(f) = 0\}$ is a closed subspace of $L^2(X)$.
- ii. Prove that there exists a unique $g \in L^2(X)$ which represents Λ in the sense that $\Lambda(f) = \Lambda_g(f)$ for each $f \in L^2(X)$.

Hint: You may use, without proof, the fact that $L^2(X) = M \oplus M^{\perp}$.

- 2. (a) i. Give the definition of the vector space L[∞](ℝⁿ) and that of the corresponding norm || · ||_∞.
 ii. Verify that || · ||_∞ indeed defines a norm on the vector space L[∞](ℝⁿ).
 - iii. Carefully prove that $L^{\infty}(\mathbb{R}^n)$ when equipped with the norm $\|\cdot\|_{\infty}$ is in fact a Banach space. (b) Prove that

$$L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n) \subset L^2(\mathbb{R}^n)$$

and that for any measurable function $f: \mathbb{R}^n \to \mathbb{C}$ one in fact has

$$||f||_2 \le ||f||_1^{1/2} ||f||_{\infty}^{1/2}.$$

3. (a) Prove that if $f, g: \mathbb{R}^n \to \mathbb{C}$ are both measurable functions on \mathbb{R}^n , then

$$h(x,y) := f(x-y)g(y)$$

defines a measurable function on $\mathbb{R}^n \times \mathbb{R}^n$.

Hint: You may use, without proof, that F(x, y) = f(x) is a measurable function on ℝⁿ × ℝⁿ.
(b) Prove that if f ∈ L¹(ℝⁿ) ∩ L[∞](ℝⁿ) and g ∈ L¹(ℝⁿ), then the convolution f * g, defined for each x ∈ ℝⁿ by

$$f * g(x) := \int f(x - y)g(y) \, dy$$

is also a well-defined function in $L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$ and moreover satisfies the following estimates:

- i. $||f * g||_{\infty} \le ||g||_1 ||f||_{\infty}$
- ii. $||f * g||_1 \le ||g||_1 ||f||_1$ [Carefully justify your use of Fubini/Tonelli]
- iii. $||f * g||_2 \le ||g||_1 ||f||_2$ [Hint: First show that $|f * g|^2 \le ||g||_1 (|f|^2 * |g|)$]
- 4. (a) Let $\varphi \in L^1(\mathbb{R})$ with $\int_{\mathbb{R}} \varphi(x) dx = 1$ and $\varphi_t(x) := t^{-1}\varphi(t^{-1}x)$. Prove that if $f : \mathbb{R} \to \mathbb{C}$ is bounded and uniformly continuous, then $f * \varphi_t$ converges uniformly to f as $t \to 0$.
 - (b) Let $f: [0,1] \to \mathbb{R}$ be continuous. Prove the Weierstrass Approximation Theorem, namely that for any $\varepsilon > 0$ there exists a polynomial $P: [0,1] \to \mathbb{R}$ such that

$$\sup_{x \in [0,1]} |f(x) - P(x)| < \varepsilon.$$

Hint: You may use, without proof, the fact that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for all $x \in \mathbb{R}$ and that this series converges uniformly on all compact subsets of \mathbb{R} .