Math 8100 Exam 1

Monday the 6th of October 2014

Answer any <u>FOUR</u> of the following five problems

- 1. (a) Let E be an arbitrary subset of \mathbb{R}^n .
 - i. What is the definition of $m_*(E)$, the Lebesgue outer measure of E?
 - ii. Prove that there exists a Borel set B with the property that $E \subseteq B$ and $m_*(B) = m_*(E)$. You can use, without proof, the fact that if $m_*(E) < \infty$ then for any given $\varepsilon > 0$ there exists an open set G with the property that $E \subseteq G$ and $m_*(G) < m_*(E) + \varepsilon$.
 - (b) i. Recall that E ⊆ ℝⁿ is Lebesgue measurable if for any ε > 0 there exists an open set G with E ⊆ G such that m_{*}(G \ E) < ε. Use this definition to prove the following characterization:
 A set E ⊆ ℝⁿ is Lebesgue measurable if and only if there exists a Borel set B with the property that E ⊆ B and m_{*}(B \ E) = 0.
 - ii. Give an example (no proofs required) of a specific set $E \subseteq \mathbb{R}$ with $m_*(E) < \infty$ and a Borel set B with the property that $E \subseteq B$ but $m_*(B) m_*(E) < m_*(B \setminus E)$.
- 2. (a) Give a definition of what it means to say that an extended real-valued function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is Lebesgue measurable.
 - (b) Prove, arguing directly from the definition you gave in Question 2a, that if $\{f_j\}_{j=1}^{\infty}$ is a sequence of extended real-valued Lebesgue measurable functions, then

$$\liminf_{i \to \infty} f_j$$

will also be a Lebesgue measurable function.

3. Recall that

 $L^+(\mathbb{R}^n) := \{ f : \mathbb{R}^n \to [0, \infty] : f \text{ is Lebesgue measurable} \}.$

- (a) Let φ be a simple function in $L^+(\mathbb{R}^n)$, give the definition of the integral of φ and extend this definition to cover all functions $f \in L^+(\mathbb{R}^n)$.
- (b) Carefully state both Fatou's lemma and the Monotone Convergence Theorem for functions in L^+ and prove that each result implies the other.
- 4. Let *E* be a Lebesgue measurable subset of \mathbb{R}^n and $f: E \to \overline{\mathbb{R}}$ be an extended real-valued Lebesgue measurable function. We shall say that *f* is *almost bounded on E* if

For any $\varepsilon > 0$ there exists N > 0 such that $m(\{x \in E : |f(x)| \ge N\}) < \varepsilon$.

(a) Prove that

f almost bounded on $E \implies |f(x)| < \infty$ for almost every $x \in E$

- (b) Give an example (no proofs required) showing that the converse to the statement above is false.
- (c) Prove that if $f \in L^1(E)$ or $m(E) < \infty$, then

 $|f(x)| < \infty$ for almost every $x \in E \implies f$ almost bounded on E

- 5. (a) State any version of the Dominated Convergence Theorem.
 - (b) Prove that $\{f_j\}_{j=1}^{\infty}$ is a sequence of functions in $L^1(\mathbb{R}^n)$ with the property that $\sum_{j=1}^{\infty} ||f_j||_1 < \infty$,

then $\sum_{j=1}^{\infty} f_j$ converges to an L^1 function and

$$\int \sum_{j=1}^{\infty} f_j = \sum_{j=1}^{\infty} \int f_j.$$
(1)

You can use, without proof, the fact that (1) holds unconditionally for any sequence in L^+ .