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ROTH’S THEOREM

In this note we give a self-contained proof of the second most famous theorem of Klaus Roth, namely
the very special case of Szemerédi’s theorem (the density version of van der Waerden’s theorem) where the
arithmetic progressions are of length three.

Roth’s Theorem. Let δ > 0. There exists an absolute constant C > 0 such that if N ≥ exp exp(Cδ−1) and
A ⊂ [1, N ] with |A| = δN , then A necessarily contains a (non-trivial) arithmetic progression of length three.

1. Fourier analysis on Z

If f : Z → C and
∑
n∈Z

|f(n)| < ∞, then we define its Fourier transform by

f̂(α) =
∑
n∈Z

f(n)e−2πinα.

Our absolute summability assumption on f ensures that the infinite series defining f̂ converges uniformly
and hence that f̂ is a continuous function on the circle. In this setting the Fourier inversion formula and
Plancherel’s identity are essentially immediate consequences of the familiar orthogonality relation∫ 1

0

e2πinαdα =

{
1 if n = 0
0 if n 6= 0

.

Indeed it is an easy exercise, using the uniform convergence of the infinite series defining f̂ , to then estalish:
(i) Fourier inversion formula

f(n) =
∫ 1

0

f̂(α)e2πinαdα.

(ii) Plancherel’s identity ∫ 1

0

|f̂(α)|2dα =
∑
n∈Z

|f(n)|2.

2. Proof of Roth’s theorem

We introduce the trilinear form

Λ3(f, g, h) :=
∑
n∈Z

∑
d∈Z

f(n)g(n + d)h(n + 2d) =
∫ 1

0

f̂(α)ĝ(−2α)ĥ(α) dα,

where the second identity can be easily verified using the Fourier inversion formula. The significance of the
trilinear form is that Λ3(1A, 1A, 1A) in fact equals the exact number of three-term arithmetic progressions in
A (including the |A| trivial progressions where d = 0). In order to prove Roth’s theorem it therefore suffices
to show that

Λ3(1A, 1A, 1A) > δN.

For technical reasons it shall be convenient to consider functions of mean value zero.

Definition 1 (Balanced function). We define the balanced function of A to be

fA = 1A − δ1[1,N ].

Since A has density δ on [1, N ] it is a simple exercise to verify that indeed
∑

fA(n) = 0. Writing (the
second) 1A as 1A = δ1[1,N ] + fA we obtain

(1) Λ3(1A, 1A, 1A) = δ
∑
n∈Z

∑
d∈Z

1A(n)1A(n + 2d) + Λ3(1A, fA, 1A),

and note (by considering the even and odd elements of A) that

|A|2

2
≤

∑
n∈Z

∑
d∈Z

1A(n)1A(n + 2d) ≤ |A|2

The leading term in identity (1) is therefore approximately δ3N2 which is instructive as this is also
approximately the number of three-term arithmetic progressions that we would expect A to contain if it
where random, obtained by selecting each natural number from 1 to N independently with probability δ.
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Definition 2 (ε-uniformity). We say that A is ε-uniform if sup
α∈[0,1]

|f̂A(α)| ≤ εN.

Lemma 3 (Uniform ⇒ Quasirandom). If A is ε-uniform with ε = δ2/4, then Λ3(1A, 1A, 1A) ≥ δ3N2/4.

We note that that δ3N2/4 > δN if N ≥ 8δ−2 (say).

Proof of Lemma 3. We will show that under this regularity assumption on A the term Λ(1A, 1A, fA) is in
fact an error term and satisfies the estimate

|Λ(1A, fA, 1A)| ≤ δ3N2/4.

This follows immediately from the Plancherel’s identity since

|Λ(1A, fA, 1A)| ≤ sup
α∈[0,1]

|f̂A(α)|
∫ 1

0

|1̂A(α)|2dα ≤ εδN2. �

At the heart of our proof of Roth’s theorem is the following result.

Lemma 4 (Non-uniform ⇒ Additive structure). If A is not ε-uniform then there exists an arithmetic
progression P with |P | ≥

√
εN/64π such that |A ∩ P | > (δ + ε/8)|P |.

Proof of Lemma 4. We let L =
√

εN/64π and suppose that

|A ∩ P | ≤ (δ + ε/8)|P |
for every arithmetic progression P , with |P | ≥ L.

Let α ∈ [0, 1] be arbitrary. It follows from Dirichlet’s principle that there exists q ≤ 4πL such that
‖qα‖ ≤ 1/4πL. Defining

P0 = {`q : 1 ≤ ` ≤ L}
it is then easy to see that

|1̂P0(α)| ≥ L−
L∑

`=1

∣∣e2πi`qα − 1
∣∣ ≥ L

(
1− 2πL‖qα‖

)
≥ L/2.

Since fA has mean value zero it follows that

fA ∗ 1P0(n) =
∑
m

fA(m)1P0(n−m)

also has mean value zero. Using the fact that |g| = 2g+ − g where g+ = max{g, 0} denotes the positive-part
function, it then follows that∑

n∈Z

(
fA ∗ 1P0(n)

)
+

=
1
2

∑
n∈Z

|fA ∗ 1P0(n)| ≥ 1
2
|f̂A(α)1̂P0(α)| ≥ L

4
|f̂A(α)|.

However, by assumption

fA ∗ 1P0(n) =
L∑

`=1

fA(n− `q) = |A ∩ Pn| − δ|Pn ∩ [1, N ]| ≤ εL/8

whenever Pn := n− P0 ⊆ [1, N ]. We note that if A ∩ Pn 6= ∅ then Pn ⊆ [1, N ] for all but at most Lq values
of n, and hence ∑

n∈Z

(
fA ∗ 1P0(n)

)
+
≤ L(εN/8 + 2Lq) ≤ LεN/4.

It therefore follows that |f̂A(α)| ≤ εN for all α ∈ [0, 1], and hence that A is ε-uniform. �

Proof of Roth’s Theorem. We assume that A contains no non-trivial 3-term arithmetic progressions. This
will, for N large enough, lead us to a contradiction.

It follows from Lemmas 3 and 4 that if A contains no three-term arithmetic progression then there must
exists a (long) arithmetic progression P1 with |P1| = N1 ≥

√
δ2N/256π such that |A∩P1| ≥ (δ + δ2/32)|P1|.

If we pass to this subprogression and rescale it to have common difference 1, we obtain a set A1 ⊆ [1, N1]
with |A1| = δ1N1 where N1 ≥ δN1/2/

√
256π and δ1 ≥ δ + δ2/32 that still does not contain an arithmetic

progression of length three. After iterating this argument k = 64/δ times the density increases beyond 1,
that is δk > 1, an absurdity if Nk also remains large. Since Nk ≥ δ2N1/2k

/256π it follows that log Nk ≥
2−k log N − c′ log δ−1, for some c′ > 0, and hence Nk � 1 whenever log N ≥ eC/δ for some suitably large
constant C > 0. �


