Exam 2

Math 4100: Answer any THREE of the following FIVE questions
Math 6100: Answer any FOUR of the following FIVE questions
* All questions are weighted equally.

1. (a) Let $f: \mathbb{R} \to \mathbb{R}$.

i. Carefully state the ε - δ definition of what it means for f to be *continuous* at $x_0 \in \mathbb{R}$.

ii. Carefully state the definition of f being uniformly continuous on some set $X \subseteq \mathbb{R}$.

(b) Use the definition from (i) above to prove that $g(x) = \frac{x^2 + 2x - 5}{x - 2}$ is continuous at $x_0 = 1$.

(c) Prove that $h(x) = x^{-1}$ is continuous on $(0, \infty)$, uniformly continuous on $[a, \infty)$ for any a > 0, but not uniformly continuous on $(0, \infty)$.

2. (a) Let f be a differentiable function on [a, b].

i. Prove that if f attains a minimum at some point $c \in (a, b)$, then f'(c) = 0.

ii. Prove that if L lies between f'(a) and f'(b), then there exist $c \in (a,b)$ such that f'(c) = L. Hint: Consider h(x) := f(x) - Lx

(b) Let g be a differentiable function on [0,2], with g(0)=0 and g(1)=g(2)=1.

i. Show that g'(c) = 1/2 for some $c \in (0, 2)$.

ii. Show that g'(c) = 1/7 for some $c \in (0, 2)$.

3. (a) Find the value of $f^{(17)}(0)$ if $f(x) = \frac{4x}{2-x}$.

(b) Give an example of an infinitely differentiable function that is <u>not</u> equal to its Taylor series.

(c) i. Prove that if $h:[0,\infty)\to\mathbb{R}$ is twice differentiable on [0,x], then

$$h(x) = h(0) + h'(0)x + \frac{h''(c)}{2}x^2$$

for some $c \in (0, x)$. Hint: Apply the "Generalized MVT" to h(x) - h(0) - h'(0)x and x^2 .

ii. How well does 1 + x/2 approximate $\sqrt{1+x}$ on [0, 1/10]?

4. (a) i. Find the pointwise limit of

$$f_n(x) = \frac{nx}{1 + nx}$$

on $[0,\infty)$. Explain why we know that the convergence cannot be uniform on $[0,\infty)$.

ii. Prove that the convergence is uniform on $[a, \infty)$ whenever a > 0.

iii. Using the definition directly, argue that the convergence is not uniform on $(0, \infty)$.

(b) Let $\{r_n\}_{n=1}^{\infty}$ be any enumeration of the rational numbers. For each $n \in \mathbb{N}$ define

$$g_n(x) = \begin{cases} 1 \text{ if } x > r_n \\ 0 \text{ if } x \le r_n \end{cases}.$$

Prove that

$$g(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} g_n(x)$$

defines a strictly increasing function g on \mathbb{R} that is continuous on $\mathbb{R} \setminus \mathbb{Q}$.

5. (a) Let $h_n(x) = (x^2 + 1/n)^{1/2}$.

i. Prove that h_n is differentiable at 0 for each $n \in \mathbb{N}$.

ii. Prove that h_n converges uniformly to |x| for all $x \in \mathbb{R}$.

(b) Show that

$$h(x) = \sum_{n=0}^{\infty} \frac{x^n}{n^2 + x^n}$$

defines a continuous function h on [0,1] that is differentiable on [0,1).