Fall 2017

Review of Infinite Series

1. Important infinite series

Geometric series:
$$\sum_{n=0}^{\infty} r^n$$
 converges $\iff |r| < 1$. If $|r| < 1$, then $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$
The *p*-series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges $\iff p > 1$.

2. Series Tests

Definition. Given a sequence $\{a_n\}$ let $s_n = a_1 + \cdots + a_n$ denote its *n*th partial sum, then

$$\{a_n\}$$
 summable $\iff \sum_{n=1}^{\infty} a_n$ converges $\iff \{s_n\}$ converges.

Theorem 1 (Cauchy Criterion).

$$\sum_{n=1}^{\infty} a_n \quad \text{converges} \quad \Longleftrightarrow \quad \text{for every } \varepsilon > 0, \text{ there exists } N \in \mathbb{N} \text{ such that } \left| \sum_{k=m+1}^n a_k \right| \le \varepsilon \text{ if } n > m \ge N.$$

Corollary 2. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem 3. If $a_n \ge 0$ and $s_n = a_1 + \dots + a_n$, then $\sum_{n=1}^{\infty} a_n = a_1 + \dots + a_n$

$$\sum_{n=1}^{\infty} a_n \quad converges \quad \Longleftrightarrow \quad \{s_n\} \quad bounded.$$

Theorem 4 (Cauchy Condensation Test). If $\{a_n\}$ is a decreasing sequence of non-negative terms, then

$$\sum_{n=1}^{\infty} a_n \quad converges \quad \Longleftrightarrow \quad \sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots \quad converges.$$

* In Math 3100 you may have instead learned the "Integral Test". These tests are commonly used to establish when the p-series-type sums converge. Theorem 4 is Theorem 3.27 in Rudin.

Theorem 5 (Direct Comparison Test). If $|a_n| \leq b_n$ for all sufficiently large $n \in \mathbb{N}$, then

$$\sum_{n=1}^{\infty} b_n \quad converges \quad \Longrightarrow \quad \sum_{n=1}^{\infty} a_n \quad converges.$$

Corollary 6 (Direct Comparison Test for Divergence).

If
$$0 \le b_n \le a_n$$
 for all sufficiently large $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Corollary 7 (Absolute Convergence implies Convergence).

If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Corollary 8 (Limit Comparison Test). Suppose $a_n > 0$, $b_n > 0$, and $\lim_{n \to \infty} \frac{a_n}{b_n} = L \neq 0$, then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \sum_{n=1}^{\infty} b_n \text{ converges.}$$

Theorem 9 (Root Test). Let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|} = \alpha$.

- If $\alpha < 1$, then $\sum_{n=1}^{\infty} |a_n|$ converges.
- If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Recall, by considering for example $\sum \frac{1}{n}$ and $\sum \frac{1}{n^2}$, that the Root Test is inconclusive if $\alpha = 1$. **Theorem 10** (Ratio Test). Let $\{a_n\}$ be a sequence of non-zero terms.

- If $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\sum_{n=1}^{\infty} |a_n|$ converges.
- If there exists an $N \in \mathbb{N}$ such that $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for all $n \ge N$, then $\sum_{n=1}^{\infty} a_n$ diverges.

The Ratio Test is also inconclusive if either $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ or $\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$.

Although Theorem 10 can easily be established directly, it also follows from Theorem 9 and the following

Lemma 11. If $\{c_n\}$ is any sequence of positive real numbers, then

$$\liminf_{n \to \infty} \frac{c_{n+1}}{c_n} \le \liminf_{n \to \infty} \sqrt[n]{c_n} \le \limsup_{n \to \infty} \sqrt[n]{c_n} \le \limsup_{n \to \infty} \frac{c_{n+1}}{c_n}.$$

Partial Summation: If $s_n = a_1 + \cdots + a_n$, then it is easy to verify that

$$\sum_{k=m+1}^{n} a_k b_k = s_n b_{n+1} - s_m b_{m+1} + \sum_{k=m+1}^{n} s_k (b_k - b_{k+1}).$$

If we let $n \to \infty$ we see that the series $\sum a_k b_k$ converges if both the series $\sum s_k (b_k - b_{k+1})$ and the sequence $\{s_n b_{n+1}\}$ converge, the next two tests give sufficient conditions for this to indeed happen.

Theorem 12 (Dirichlet Test).

$$\{s_n\}$$
 bounded and $\{b_n\}$ decreasing with limit $0 \implies \sum_{n=1}^{\infty} a_n b_n$ converges.

Corollary 13 (Alternating Series Test). If $\{b_n\}$ is decreasing with limit 0, then $\sum_{n=1}^{\infty} (-1)^n b_n$ converges. Theorem 14 (Abel Test).

$$\sum_{n=1}^{\infty} a_n \text{ convergent and } \{b_n\} \text{ monotone and bounded } \implies \sum_{n=1}^{\infty} a_n b_n \text{ converges.}$$
3. STRATEGY FOR ANALYZING $\sum_{n=1}^{\infty} a_n$

1. Does $a_n \to 0$?

If NO, then $\sum_{n=1}^{\infty} a_n$ diverges.

2. Does $\sum_{n=1}^{\infty} |a_n|$ converge?

If YES, then $\sum_{n=1}^{\infty} a_n$ converges absolutely, and hence converges. Try using

- geometric series and *p*-series
- first and second comparison tests
- ratio and root tests
- Cauchy condensation test (or integral test)
- 3. If $\sum_{n=1}^{\infty} |a_n|$ does not converge or you cannot decide, then try
 - alternating series test
 - partial summation (Dirichlet or Abel Test)
 - If these tests apply, then $\sum_{n=1}^{\infty} a_n$ converges.

Recall that if

 $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges, then we say $\sum_{n=1}^{\infty} a_n$ converges conditionally.