
Math 4100/6100 Fall 2017

Review of Infinite Series

1. Important infinite series

Geometric series:
∑∞

n=0 r
n converges ⇐⇒ |r| < 1. If |r| < 1, then

∑∞
n=0 r

n =
1

1− r
.

The p-series:
∑∞

n=1

1

np
converges ⇐⇒ p > 1.

2. Series Tests

Definition. Given a sequence {an} let sn = a1 + · · ·+ an denote its nth partial sum, then

{an} summable ⇐⇒
∞∑

n=1

an converges ⇐⇒ {sn} converges.

Theorem 1 (Cauchy Criterion).

∞∑
n=1

an converges ⇐⇒ for every ε > 0, there exists N ∈ N such that

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤ ε if n > m ≥ N .

Corollary 2. If
∑∞

n=1 an converges, then limn→∞ an = 0.

Theorem 3. If an ≥ 0 and sn = a1 + · · ·+ an, then
∞∑

n=1

an converges ⇐⇒ {sn} bounded.

Theorem 4 (Cauchy Condensation Test). If {an} is a decreasing sequence of non-negative terms, then
∞∑

n=1

an converges ⇐⇒
∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · · converges.

* In Math 3100 you may have instead learned the “Integral Test”. These tests are commonly used to establish
when the p-series-type sums converge. Theorem 4 is Theorem 3.27 in Rudin.

Theorem 5 (Direct Comparison Test). If |an| ≤ bn for all sufficiently large n ∈ N, then
∞∑

n=1

bn converges =⇒
∞∑

n=1

an converges.

Corollary 6 (Direct Comparison Test for Divergence).

If 0 ≤ bn ≤ an for all sufficiently large n ∈ N and

∞∑
n=1

bn diverges, then

∞∑
n=1

an diverges.

Corollary 7 (Absolute Convergence implies Convergence).

If

∞∑
n=1

|an| converges, then

∞∑
n=1

an converges.

Corollary 8 (Limit Comparison Test). Suppose an > 0, bn > 0, and lim
n→∞

an
bn

= L 6= 0, then

∞∑
n=1

an converges ⇐⇒
∞∑

n=1

bn converges.
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Theorem 9 (Root Test). Let α = lim sup
n→∞

n
√
|an| = α.

• If α < 1, then
∑∞

n=1 |an| converges.

• If α > 1, then
∑∞

n=1 an diverges.

Recall, by considering for example
∑

1
n and

∑
1
n2 , that the Root Test is inconclusive if α = 1.

Theorem 10 (Ratio Test). Let {an} be a sequence of non-zero terms.

• If lim sup
n→∞

∣∣∣an+1

an

∣∣∣ < 1, then
∑∞

n=1 |an| converges.

• If there exists an N ∈ N such that
∣∣∣an+1

an

∣∣∣ ≥ 1 for all n ≥ N , then
∑∞

n=1 an diverges.

The Ratio Test is also inconclusive if either lim sup
n→∞

∣∣∣an+1

an

∣∣∣ = 1 or lim inf
n→∞

∣∣∣an+1

an

∣∣∣ = 1.

Although Theorem 10 can easily be established directly, it also follows from Theorem 9 and the following

Lemma 11. If {cn} is any sequence of positive real numbers, then

lim inf
n→∞

cn+1

cn
≤ lim inf

n→∞
n
√
cn ≤ lim sup

n→∞
n
√
cn ≤ lim sup

n→∞

cn+1

cn
.

Partial Summation: If sn = a1 + · · ·+ an, then it is easy to verify that
n∑

k=m+1

akbk = snbn+1 − smbm+1 +

n∑
k=m+1

sk(bk − bk+1).

If we let n→∞ we see that the series
∑
akbk converges if both the series

∑
sk(bk − bk+1) and the sequence

{snbn+1} converge, the next two tests give sufficient conditions for this to indeed happen.

Theorem 12 (Dirichlet Test).

{sn} bounded and {bn} decreasing with limit 0 =⇒
∞∑

n=1

anbn converges.

Corollary 13 (Alternating Series Test). If {bn} is decreasing with limit 0, then
∑∞

n=1(−1)nbn converges.

Theorem 14 (Abel Test).
∞∑

n=1

an convergent and {bn} monotone and bounded =⇒
∞∑

n=1

anbn converges.

3. Strategy for analyzing
∑∞

n=1 an

1. Does an → 0?

If NO, then
∑∞

n=1 an diverges.

2. Does
∑∞

n=1 |an| converge?

If YES, then
∑∞

n=1 an converges absolutely, and hence converges. Try using

• geometric series and p-series
• first and second comparison tests
• ratio and root tests
• Cauchy condensation test (or integral test)

3. If
∑∞

n=1 |an| does not converge or you cannot decide, then try

• alternating series test
• partial summation (Dirichlet or Abel Test)

If these tests apply, then
∑∞

n=1 an converges.

Recall that if∑∞
n=1 an converges but

∑∞
n=1 |an| diverges, then we say

∑∞
n=1 an converges conditionally.


