Exam 1

- 1. (10 points) Let $\{x_n\}$ be a sequence in \mathbb{R} with $|x_n| \leq 1$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = x$.
 - (a) Give the definition of $\lim_{n \to \infty} x_n = x$.
 - (b) Prove that $|x| \leq 1$
 - (c) Give a direct proof, using the definition given in (a), of the fact that $\lim_{n \to \infty} x_n^2 = x^2$.
- 2. (10 points) Determine whether the following series converge or diverge, be sure to justify your answer.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}$$

(b) $\sum_{n=1}^{\infty} \frac{(n!)^2 4^n}{(2n)!}$

- 3. (10 points) Let A and B be non-empty subsets of \mathbb{R} that are bounded above.
 - (a) Define what it means for α to be
 - i. an upper bound for A,
 - ii. a least upper bound for A.
 - (b) Let $A + B = \{a + b : a \in A, b \in B\}$. Prove that $\sup(A + B) = \sup A + \sup B$.
 - (c) Let $A B = \{a b : a \in A, b \in B\}$. Must $\sup(A B) = \sup A \sup B$? Give either a proof or counterexample.
- 4. (10 points)
 - (a) Let *E* be a non-empty subset of \mathbb{R} which is bounded above. Prove that $\sup E \in \overline{E}$.
 - (b) Let $\{x_n\}$ be a bounded sequence in \mathbb{R} . Using (a), or otherwise, prove that $\{x_n\}$ contains a convergent subsequence $\{x_{n_k}\}$ with the property that

$$\lim_{k \to \infty} x_{n_k} = \limsup_{n \to \infty} x_n.$$

5. (10 points)

- (a) Define finite, countable, and uncountable.
- (b) Let A be an uncountable subset of $[1, \infty)$.
 - i. Show that there exist $n \in \mathbb{N}$ such that $A \cap [n, n+1)$ is uncountable.
 - ii. Using (i), or otherwise, prove that A must have a limit point in $[1, \infty)$.
 - iii. * Prove that A must in fact contain one of its limit points.