Exam 1

Math 4100: Answer any FOUR of the following SIX questions Math 6100: Answer any FIVE of the following SIX questions

* All questions are weighted equally

- 1. Prove that $F \subseteq \mathbb{R}$ is a closed set if and only if its complement F^c is an open set.
- 2. (a) Carefully state the Axiom of Completeness (the least upper bound axiom).
 - (b) Let $\{x_n\}$ be a bounded increasing sequence of real numbers. Use the Axiom of Completeness to prove that $\lim_{n \to \infty} x_n$ exists and equals $\sup\{x_n : n \in \mathbb{N}\}$.
- 3. Let $\{x_n\}$ be a bounded sequence. Prove that if $\beta < \limsup_{n \to \infty} x_n$, then

 $\{n \in \mathbb{N} : x_n > \beta\}$ is infinite

directly <u>twice</u>, once each using the following equivalent definitions:

- (a) $\limsup x_n := \sup \{x \in \mathbb{R} : x \text{ is a subsequential limit of } \{x_n\}\}$ (b) $\limsup_{n \to \infty} x_n := \inf_{n \in \mathbb{N}} \sup_{k \ge n} x_k$
- 4. Let K be a non-empty sequentially compact subset of \mathbb{R} .
 - (a) Prove that K is both closed and bounded.
 - (b) Prove that $\sup K$ exists and is contained in K.
- (a) Define finite, countable, and uncountable. 5.
 - (b) Let A be an uncountable subset of \mathbb{R} .
 - i. Show that there exist $n \in \mathbb{Z}$ such that $A \cap [n, n+1)$ is uncountable.
 - ii. Using i., or otherwise, prove that A must have a limit point in \mathbb{R} .
- 6. Let K be a non-empty compact subset of \mathbb{R} and $\{F_1, F_2, F_3, \ldots\}$ be a countable collection of closed subsets of K with the property that

$$\bigcap_{n=1}^{N} F_n \neq \emptyset \text{ for all } N \in \mathbb{N}.$$

Prove that

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset$$