Math 4100/6100 Assignment 7

 More on Continuity

 More on Continuity}

Due date: By 12:00 pm on Friday the 20th of October 2017

1. (a) i. Show that $f(x)=x^{3}$ is continuous on all of \mathbb{R}.
ii. Argue that f is however not uniformly continuous on \mathbb{R}.
(b) Show that $g(x)=1 / x^{2}$ is uniformly continuous on $[1, \infty)$, but not on the set $(0,1]$.
(c) Show that $h(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$.
2. Give an example of each of the following, or provide a short argument for why the request is impossible.
(a) A continuous function defined on $[0,1]$ with range $(0,1)$.
(b) A continuous function defined on $(0,1)$ with range $[0,1]$.
(c) A continuous function defined on $(0,1]$ with range $(0,1)$.
3. Let (X, d) be a metric space and $f: X \rightarrow \mathbb{R}$ be continuous. Prove that

$$
Z(f):=\{x \in X: f(x)=0\}
$$

is a closed subset of X.
4. Let (X, d) be a metric space.
(a) If E is a non-empty subset of X, we define the distance from $x \in X$ to E by

$$
\rho_{E}(x)=\inf _{z \in E} d(x, z)
$$

i. Prove that $\rho_{E}(x)=0$ if and only if $x \in \bar{E}$.
ii. Prove that ρ_{E} is uniformly continuous on X, by showing that

$$
\left|\rho_{E}(x)-\rho_{E}(y)\right| \leq d(x, y)
$$

for all $x, y \in X$.
(b) Let A and B be disjoint non-empty closed subsets of X, and define

$$
f(x):=\frac{\rho_{A}(x)}{\rho_{A}(x)+\rho_{B}(x)}
$$

for each $x \in X$. Show that f is a continuous function from X into $[0,1]$ such that $f(x)=0$ for all $x \in A$, and $f(x)=1$ for all $x \in B$.
Note that this in particular establishes a converse to Q3: Every closed set in X is $Z(f)$ for some continuous function $f: X \rightarrow \mathbb{R}$. It also gives another proof that \mathbb{R} cannot be written as a disjoint union of two non-empty closed subsets.

Math 6100/Bonus Problems

1. Suppose K and F are disjoint sets in \mathbb{R}, with K compact, and F closed.
(a) Prove that there exist $\delta>0$ such that $|x-y|>\delta$ whenever $x \in K$ and $y \in F$. Hint: Use the fact, see Q4(a)i. above, that ρ_{F} is a continuous positive function on K.
(b) Show that there in fact exist points $x_{0} \in K$ and $y_{0} \in F$ such that

$$
\left|x_{0}-y_{0}\right|=\inf \{|x-y|: x \in K \text { and } y \in F\}
$$

(c) Show that it is possible to have $\inf \left\{|x-y|: x \in F_{1}\right.$ and $\left.y \in F_{2}\right\}=0$ for two disjoint closed sets F_{1} and F_{2} if neither is assumed to be compact.

Challenge Problem

1. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with the truly amazing property that the image of every open interval is the whole of \mathbb{R}.
