Math 4100/6100 Assignment 6 Continuity and some more Basic Topology of \mathbb{R}

Due date: 12:00 pm on Friday the 13th of October 2017

1. Suppose $f : \mathbb{R} \to \mathbb{R}$ satisfies

$$\lim_{h \to 0} \left(f(x+h) - f(x-h) \right) = 0$$

for every $x \in \mathbb{R}$. Does this imply that f is continuous?

2. (a) Define Dirichlet's function $g: \mathbb{R} \to \mathbb{R}$, by

$$g(x) := \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Prove that g is discontinuous at $x \in \mathbb{R}$.

(b) Define a modified Dirichlet's function $h : \mathbb{R} \to \mathbb{R}$, by

$$h(x) := \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Prove that h is continuous at x = 0, but discontinuous at all $x \neq 0$.

(c) Define Thomae's function $t : \mathbb{R} \to \mathbb{R}$, by

$$t(x) := \begin{cases} 1 & \text{if } x = 0\\ \frac{1}{n} & \text{if } x = \frac{m}{n} \in \mathbb{Q} \setminus \{0\} \text{ in lowest terms with } n > 0\\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Prove that t is continuous at every $x \notin \mathbb{Q}$, but has a simple discontinuity at every $x \in \mathbb{Q}$.

- 3. Decide if the following claims are true or false, providing either a short proof or counterexample to justify each conclusion. Assume throughout that f is defined and continuous on all of \mathbb{R} .
 - (a) If $f(x) \ge 0$ for all x < 1, then $f(1) \ge 0$ as well.
 - (b) If f(r) = 0 for all $r \in \mathbb{Q}$, then f(x) = 0 for all $x \in \mathbb{R}$.
 - (c) If $f(x_0) > 0$ for a single point $x_0 \in \mathbb{R}$, then f(x) is in fact strictly positive for uncountably many points.
- 4. A set $A \subseteq \mathbb{R}$ is called nowhere-dense if \overline{A} contains no non-empty open intervals.
 - (a) Show that a set E is nowhere-dense in \mathbb{R} if and only if the complement of \overline{E} is dense in \mathbb{R} .
 - (b) Decide whether teh following sets are dense in \mathbb{R} , nowhere-dense in \mathbb{R} , or somewhere in between:
 - i. $\mathbb{Q} \cap [0,1]$
 - ii. $\{1/n : n \in \mathbb{N}\}$
 - iii. the irrationals $\mathbb{R} \setminus \mathbb{Q}$
 - iv. the Cantor set

- 5. A set $A \subseteq \mathbb{R}$ is called an F_{σ} set if it can be written as the countable union of closed sets. A set $B \subseteq \mathbb{R}$ is called a G_{δ} set if it can be written as the countable intersection of open sets \mathbb{R} .
 - (a) Argue that a set A is a G_{δ} set if and only if its complement is an F_{σ} set.
 - (b) i. Show that a closed interval [a, b] is a G_{δ} set.
 - ii. Show that a half-open interval [a, b) is both a G_{δ} set and an F_{σ} set.
 - iii. Show that \mathbb{Q} is an F_{σ} set and the irrationals $\mathbb{R} \setminus \mathbb{Q}$ is a G_{δ} set.
 - (c) i. Show that every closed set is a G_δ set and every open set is an F_σ set.
 ii. Give an example of an F_σ set which is not a G_δ set. Hint: Use the fact that R cannot be written as a countable union of nowhere-dense sets. Can you recall the proof of this fact?
 - iii. Give an example of a set which is neither an F_{σ} nor a G_{δ} set.

Math 6100/Bonus Problems

- 1. Let C([0,1]) denote the collection of all real-valued continuous functions with domain [0,1].
 - (a) Show that $d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) g(x)|$ defines a metric on C([0,1]) and that with the "uniform" metric C([0,1]) is in fact a *complete* metric space.
 - (b) Prove that the unit ball $\{f \in C([0,1]) : d_{\infty}(f,0) \leq 1\}$ is closed and bounded, but not compact.
 - (c) Show that C([0,1]) with the metric d_{∞} is not totally bounded. A set is totally bounded if, for every $\varepsilon > 0$, it can be covered by finitely many balls of radius ε .