Math 4100/6100 Assignment 6 Continuity and some more Basic Topology of \mathbb{R}

Due date: 12:00 pm on Friday the 13th of October 2017

1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\lim _{h \rightarrow 0}(f(x+h)-f(x-h))=0
$$

for every $x \in \mathbb{R}$. Does this imply that f is continuous?
2. (a) Define Dirichlet's function $g: \mathbb{R} \rightarrow \mathbb{R}$, by

$$
g(x):=\left\{\begin{array}{ll}
1 & \text { if } x \in \mathbb{Q} \\
0 & \text { if } x \notin \mathbb{Q}
\end{array} .\right.
$$

Prove that g is discontinuous at $x \in \mathbb{R}$.
(b) Define a modified Dirichlet's function $h: \mathbb{R} \rightarrow \mathbb{R}$, by

$$
h(x):=\left\{\begin{array}{ll}
x & \text { if } x \in \mathbb{Q} \\
0 & \text { if } x \notin \mathbb{Q}
\end{array} .\right.
$$

Prove that h is continuous at $x=0$, but discontinuous at all $x \neq 0$.
(c) Define Thomae's function $t: \mathbb{R} \rightarrow \mathbb{R}$, by

$$
t(x):= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \in \mathbb{Q} \backslash\{0\} \text { in lowest terms with } n>0 \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Prove that t is continuous at every $x \notin \mathbb{Q}$, but has a simple discontinuity at every $x \in \mathbb{Q}$.
3. Decide if the following claims are true or false, providing either a short proof or counterexample to justify each conclusion. Assume throughout that f is defined and continuous on all of \mathbb{R}.
(a) If $f(x) \geq 0$ for all $x<1$, then $f(1) \geq 0$ as well.
(b) If $f(r)=0$ for all $r \in \mathbb{Q}$, then $f(x)=0$ for all $x \in \mathbb{R}$.
(c) If $f\left(x_{0}\right)>0$ for a single point $x_{0} \in \mathbb{R}$, then $f(x)$ is in fact strictly positive for uncountably many points.
4. A set $A \subseteq \mathbb{R}$ is called nowhere-dense if \bar{A} contains no non-empty open intervals.
(a) Show that a set E is nowhere-dense in \mathbb{R} if and only if the complement of \bar{E} is dense in \mathbb{R}.
(b) Decide whether teh following sets are dense in \mathbb{R}, nowhere-dense in \mathbb{R}, or somewhere in between:
i. $\mathbb{Q} \cap[0,1]$
ii. $\{1 / n: n \in \mathbb{N}\}$
iii. the irrationals $\mathbb{R} \backslash \mathbb{Q}$
iv. the Cantor set
5. A set $A \subseteq \mathbb{R}$ is called an F_{σ} set if it can be written as the countable union of closed sets. A set $B \subseteq \mathbb{R}$ is called a G_{δ} set if it can be written as the countable intersection of open sets \mathbb{R}.
(a) Argue that a set A is a G_{δ} set if and only if its complement is an F_{σ} set.
(b) i. Show that a closed interval $[a, b]$ is a G_{δ} set.
ii. Show that a half-open interval $[a, b)$ is both a G_{δ} set and an F_{σ} set.
iii. Show that \mathbb{Q} is an F_{σ} set and the irrationals $\mathbb{R} \backslash \mathbb{Q}$ is a G_{δ} set.
(c) i. Show that every closed set is a G_{δ} set and every open set is an F_{σ} set.
ii. Give an example of an F_{σ} set which is not a G_{δ} set.

Hint: Use the fact that \mathbb{R} cannot be written as a countable union of nowhere-dense sets. Can you recall the proof of this fact?
iii. Give an example of a set which is neither an F_{σ} nor a G_{δ} set.

Math 6100/Bonus Problems

1. Let $C([0,1])$ denote the collection of all real-valued continuous functions with domain $[0,1]$.
(a) Show that $d_{\infty}(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|$ defines a metric on $C([0,1])$ and that with the "uniform" metric $C([0,1])$ is in fact a complete metric space.
(b) Prove that the unit ball $\left\{f \in C([0,1]): d_{\infty}(f, 0) \leq 1\right\}$ is closed and bounded, but not compact.
(c) Show that $C([0,1])$ with the metric d_{∞} is not totally bounded.

A set is totally bounded if, for every $\varepsilon>0$, it can be covered by finitely many balls of radius ε.

