Math 4100/6100 Assignment 2
 Cardinality of Sets

Due date: 12:00 pm on Friday the 1st of September 2017

1. (a) Give an example of a countable collection of disjoint open intervals in \mathbb{R}.
(b) Give an example of an uncountable collection of disjoint open intervals in \mathbb{R}, or argue that no such collection exists.
2. Let A be a countable set, and A_{n} denote the collection of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ with each $a_{j} \in A$ for $1 \leq j \leq n$ (these elements need not be distinct). Prove that A_{n} is countable for each $n \in \mathbb{N}$.
3. A real number $x \in \mathbb{R}$ is called algebraic if there exist integers $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$, not all zero, such that

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0 .
$$

Said another way, a real number is algebraic if it is the root of a polynomial with integer coefficients. Real numbers that are not algebraic are called transcendental numbers.
(a) Show that $\sqrt{2}, \sqrt[3]{2}$, and $\sqrt{2}+\sqrt{3}$ are algebraic.
(b) Prove that the set of all algebraic numbers is countable. What may we conclude from this regarding the set of all transcendental numbers?
Hint: First show that the set of all polynomials with integer coefficients of degree n is countable.
4. (a) Let $C \subseteq[0,1]$ be uncountable. Show that there exists $a \in(0,1)$ such that $C \cap[a, 1]$ is uncountable.
(b) Now let A be the set of all $a \in(0,1)$ such that $C \cap[a, 1]$ is uncountable, and set $\alpha=\sup A$. Is $C \cap[\alpha, 1]$ uncountable?
(c) Does the statement in (a) remain true if "uncountable" is replaced with "infinite"?
5. (a) Let A be a given set and $P(A)$ denote the power set of A, namely the collection of all subsets of A. Prove that there does not exist a function $f: A \rightarrow P(A)$ that is onto.
Hint: Assume that such a function does exist and arrive at a contradiction by considering the set

$$
B=\{a \in A: a \notin f(a)\}
$$

(b) Prove that the set of all infinite subsets of \mathbb{N} is uncountable.

Hint: Show directly that the set of all finite subsets of \mathbb{N} is countable.

Math 6100/Bonus Problems

1. (Schröder-Bernstein Theorem). Assume there exists a 1-1 function $f: X \rightarrow Y$ and another 1-1 function $g: Y \rightarrow X$. Follow the steps to show that there exists a 1-1, onto function $h: X \rightarrow Y$ and hence $X \sim Y$.
The strategy is to partition X and Y into components $X=A \cup A^{\prime}$ and $Y=B \cup B^{\prime}$ with $A \cap A^{\prime}=\emptyset$ and $B \cap B^{\prime}=\emptyset$, in such a way that f maps A onto B, and g maps B^{\prime} onto A^{\prime}.
(a) Explain how achieving this would lead to a proof that $X \sim Y$.
(b) Set $A_{1}=X \backslash g(Y)=\{x \in X: x \notin g(Y)\}$ (what happens if $A_{1}=\emptyset$?) and inductively define a sequence of sets by letting $A_{n+1}=g\left(f\left(A_{n}\right)\right)$. Show that $\left\{A_{n}: n \in \mathbb{N}\right\}$ is a pairwise disjoint collection of subsets of X, while $\left\{f\left(A_{n}\right): n \in \mathbb{N}\right\}$ is a similar collection in Y.
(c) Let $A=\bigcup_{n=1}^{\infty} A_{n}$ and $B=\bigcup_{n=1}^{\infty} f\left(A_{n}\right)$. Show that f maps A onto B.
(d) Let $A^{\prime}=X \backslash A$ and $B^{\prime}=Y \backslash B$. Show that g maps B^{\prime} onto A^{\prime}.
