# Math 4100/6100 Assignment 10 <br> Integration 

Not to be handed in for grading

1. Let $f$ be a bounded function on $[a, b]$.
(a) Show that $U(f) \geq L(f, P)$ for any partition $P$ of $[a, b]$.
(b) Prove that $U(f) \geq L(f)$.
2. Let $f$ be a bounded real-valued function on $[a, b]$. Prove that $f$ is integrable on $[a, b]$ if and only if $f$ is integrable on $[a, c]$ and $[c, b]$ for every choice of $c \in(a, b)$ and that in this case

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

3. (a) Prove that if $f_{n} \rightarrow f$ uniform on $[a, b]$ and each $f_{n}$ is integrable, then $f$ is also integrable and

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

(b) Give an examples showing that if the convergence is merely pointwise, then $f$ need not necessarily be integrable and even if it is final conclusion does not necessarily hold.
4. Provide an example or give a reason why the request is impossible.
(a) A sequence $\left\{f_{n}\right\}$ that converges pointwse to $f$ where each $f_{n}$ has at most a finite number of discontinuities but $f$ is not integrable.
(b) A sequence $\left\{g_{n}\right\}$ that converges uniformly to $g$ where each $g_{n}$ has at most a finite number of discontinuities and $g$ is not integrable.
(c) A sequence $\left\{h_{n}\right\}$ that converges uniformly to $h$ where each $h_{n}$ is not integrable but $h$ is integrable.
5. Let $\left\{r_{n}\right\}$ be any enumeration of all the rationals in $[0,1]$ and define $f:[0,1] \rightarrow \mathbb{R}$ by setting

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } x=r_{n} \\ 0 & \text { if } x \in[0,1] \backslash \mathbb{Q}\end{cases}
$$

Prove, directly from the definition, that $f$ is integrable on $[0,1]$ and $\int_{0}^{1} f(x) d x=0$.
6. Recall Thomae's function $g: \mathbb{R} \rightarrow \mathbb{R}$, by

$$
g(x):= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \in \mathbb{Q} \backslash\{0\} \text { in lowest terms with } n>0 \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Prove, directly from the definition, that $g$ is integrable on $[0,1]$ and $\int_{0}^{1} g(x) d x=0$.
7. Let $\mathcal{C}$ denote the usual "middle third" Cantor set and

$$
h(x)=\left\{\begin{array}{lc}
1 & \text { if } x \in \mathcal{C} \\
0 & \text { if } x \notin \mathcal{C}
\end{array} .\right.
$$

Prove, directly from the definition, that $h$ is integrable on $[0,1]$ and $\int_{0}^{1} h(x) d x=0$.
8. Decide which of the following conjectures is true and supply a short proof. For those which are not true, give a counterexample.
(a) If $|f|$ is integrable on $[a, b]$, then $f$ is also integrable on $[a, b]$.
(b) Assume $g$ is integrable and $g(x) \geq 0$ on $[a, b]$. If $g(x)>0$ for an infinite number of points $x \in[a, b]$, then $\int_{a}^{b} g(x) d x>0$.
(c) If $h$ is continuous on $[a, b]$ and $h(x) \geq 0$ on $[a, b]$ with $h\left(x_{0}\right)>0$ for at least one point $x_{0} \in[a, b]$, then $\int_{a}^{b} h(x) d x>0$.
9. Show that if $f(x)>0$ for all $x \in[a, b]$ and $f$ is integrable on $[a, b]$, then $\int_{a}^{b} f(x) d x>0$
10. Decide whether the each statement is true or false, providing a short justification for each conclusion.
(a) If $h^{\prime}=g$ on $[a, b]$, then $g$ is continuous on $[a, b]$.
(b) If $g$ is continuous on $[a, b]$, then $g=h^{\prime}$ for some $h$ on $[a, b]$.
(c) If $H(x)=\int_{a}^{x} h$ is differentiable at $c \in[a, b]$, then $h$ is continuous at $c$.
11. Let $g:[a, b] \rightarrow \mathbb{R}$ be integrable.
(a) Prove that the function $G(x)=\int_{a}^{x} g(t) d t$ is uniformly continuous on $[a, b]$.
(b) Prove that

$$
\int_{a}^{c} g(t) d t=\int_{c}^{b} g(t) d t
$$

for some $c \in[a, b]$. Give an example to show that $c$ may be one of the endpoints.
12. Prove that if $f$ and $g$ are two continuous functions on $[a, b]$ and $g(x) \geq 0$ for all $x \in[a, b]$, then there must exist a point $c \in(a, b)$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \cdot \int_{a}^{b} g(x) d x
$$

