Math 4100/6100 Assignment 1

Some Preliminaries and a Review of Sequences and Series

Due date: 5:00pm on Thursday the 24th of August 2017

1. (Reverse Triangle Inequality). Use the triangle inequality to prove that if $x, y \in \mathbb{R}$, then

$$
||x|-|y|| \leq|x-y| .
$$

2. (a) Let $q \neq 0$ be rational and x be irrational. Prove that $q+x$ and $q x$ are both irrational.
(b) Use the Archimedean Property of \mathbb{R} to prove that between any two distinct real numbers there is both a rational and irrational number.
3. (a) (De Morgan's Laws). Let A and B be subsets of \mathbb{R}. Verify the following:
i. $(A \cap B)^{c}=A^{c} \cup B^{c}$
ii. $(A \cup B)^{c}=A^{c} \cap B^{c}$
(b) i. Show how induction can be used to conclude that

$$
\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)^{c}=A_{1}^{c} \cap A_{2}^{c} \cap \cdots \cap A_{n}^{c}
$$

for any finite $n \in \mathbb{N}$.
ii. Explain why induction cannot be used to conclude that

$$
\left(\bigcup_{n=1}^{\infty} A_{n}\right)^{c}=\bigcap_{n=1}^{\infty} A_{n}^{c} .
$$

iii. Is the statement in part (ii) above valid? Give either a proof or counterexample.
4. (a) Let $A \subseteq \mathbb{R}$ be non-empty and bounded below. Show that
i. $\inf A=-\sup (-A)$ where $-A=\{-x: x \in A\}$
ii. $\inf A=\sup (B)$ where $B=\{b: b$ is a lower bound for $A\}$
(b) Let $A, B \subseteq \mathbb{R}$ which are non-empty, bounded above.
i. Show that if $A \subseteq B$, then $\sup A \leq \sup B$.
ii. Show that if $\sup A<\sup B$, then there must exist a $b \in B$ that is an upper bound for A.
5. Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.
(a) $\lim _{n \rightarrow \infty} \frac{3 n+1}{2 n+5}=\frac{3}{2}$
(b) $\lim _{n \rightarrow \infty} \frac{1}{6 n^{2}+1}=0$
(c) $\lim _{n \rightarrow \infty} \frac{2}{\sqrt{n+3}}=0$
6. What happens if we reverse the order of the quantifiers in the definition of convergence of a sequence?
Definition: A sequence $\left\{a_{n}\right\}$ verconges to a if there exists an $\varepsilon>0$ such that for all $N \in \mathbb{N}$ it is true that $n \geq N$ implies $\left|a_{n}-a\right|<\varepsilon$.
Give an example of a vercongent sequence. Can you give an example a vercongent sequence that is divergent? What exactly is being described in this strange definition?
7. Verify the following using the definition of convergence of a sequence:
(a) If $a_{n} \rightarrow a$, then $\left|a_{n}\right| \rightarrow|a|$. Is the converse true?
(b) If $a_{n} \geq 0$ for all $n \in \mathbb{N}$ and $a_{n} \rightarrow a$, then $\sqrt{a_{n}} \rightarrow \sqrt{a}$.
(c) If $\left\{a_{n}\right\}$ is a bounded but not necessarily convergent sequence and $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.
(d) If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, and if $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$ as well.

Note that this immediately (right?) implies the following "Squeeze Theorem":

$$
\text { If } a_{n} \leq b_{n} \leq c_{n} \text { for all } n \in \mathbb{N} \text {, and if } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L \text {, then } \lim _{n \rightarrow \infty} b_{n}=L .
$$

8. Let $\left\{a_{n}\right\}$ be a convergent sequence with $\lim _{n \rightarrow \infty} a_{n}=a$. Prove the following two statements:
(a) If $a_{n} \leq b$ for all $n \in \mathbb{N}$, then $a \leq b$.
(b) If $\left\{a_{n}\right\}$ is increasing, then $a_{n} \leq a$ for all $n \in \mathbb{N}$.
9. Let $a_{1}=\sqrt{2}$, and define $a_{n+1}=\sqrt{2+a_{n}}$ for all $n \geq 1$. Prove that $\lim _{n \rightarrow \infty} a_{n}$ exists and equals 2 .
10. (a) Investigate the behavior (convergence or divergence) of $\sum_{n=1}^{\infty} a_{n}$ if
(i) $a_{n}=\sqrt{n+1}-\sqrt{n}$
(ii) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$
(iii) $a_{n}=(\sqrt[n]{n}-1)^{n}$.
(b) Let $a_{n}>0$ for all $n \in \mathbb{N}$.
i. Show that in $\lim _{n \rightarrow \infty} n a_{n}$ exists and is not equal to 0 , then $\sum_{n=1}^{\infty} a_{n}$ diverges.
ii. Show that in $\lim _{n \rightarrow \infty} n^{2} a_{n}$ exists, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(c) Prove that if $a_{n}>0$ for all $n \in \mathbb{N}$, then the convergence of $\sum_{n=1}^{\infty} a_{n}$ implies the convergence of both

$$
\text { (i) } \sum_{n=1}^{\infty} a_{n}^{2} \quad \text { (ii) } \sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n} .
$$

Math 6100/Bonus Problems

1. Suppose $\left\{a_{n}\right\}$ is a sequence of real numbers and $b_{n}=\frac{a_{1}+\cdots+a_{n}}{n}$.

Prove that if $a_{n} \rightarrow 0$, then $b_{n} \rightarrow 0$. Is the converse true? What if $a_{n} \rightarrow L$?
2. (a) Use Question 8 to deduce the Nested Interval Property from the Monotone Convergence Theorem.
(b) Show conversely that one can also deduce the Monotone Convergence Theorem from the Nested Interval Property.
3. Directly show the equivalence of the Bolzano-Weierstrass Theorem and the Nested Interval Property.

