Math 4100/6100 Assignment 4

Due date: 5:00 pm on Thursday the 22nd of September 2016

Basic Warm-up Problems (not to be handed in with the assignment)

1. Let $\left\{a_{n}\right\}$ be a convergent sequence with $\lim _{n \rightarrow \infty} a_{n}=a$. Prove the following two statements:
(a) If $a_{n} \leq b$ for all $n \in \mathbb{N}$, then $a \leq b$.
(b) If $\left\{a_{n}\right\}$ is increasing, then $a_{n} \leq a$ for all $n \in \mathbb{N}$.
2. (a) Prove that if $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$, and if $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$ as well.
(b) Prove that the convergence of $\left\{a_{n}\right\}$ implies the convergence of $\left\{\left|a_{n}\right|\right\}$. Is the converse true?

Sequential and Subsequential Limits

1. What happens if we reverse the order of the quantifiers in the definition of convergence of a sequence?

Definition: A sequence $\left\{a_{n}\right\}$ verconges to a if there exists an $\varepsilon>0$ such that for all $N \in \mathbb{N}$ it is true that $n \geq N$ implies $\left|a_{n}-a\right|<\varepsilon$.

Give an example of a vercongent sequence. Can you give an example a vercongent sequence that is divergent? What exactly is being described in this strange definition?
2. Here are two slightly non-standard definitions that we discussed in class:
(i) A sequence $\left\{a_{n}\right\}$ is eventually in a set $V \subseteq \mathbb{R}$ if there exists an $N \in \mathbb{N}$ such that $a_{n} \in V$ for all $n \geq N$.
(ii) A sequence $\left\{a_{n}\right\}$ is frequently in a set $V \subseteq \mathbb{R}$ if, for every $N \in \mathbb{N}$, there exists an $n \geq N$ such that $a_{n} \in V$.
(a) Is the sequence $\left\{(-1)^{n}\right\}$ eventually or frequently in the set $\{1\}$?
(b) Which definition is stronger? Does frequently imply eventually or does eventually imply frequently?
(c) Suppose an infinite number of terms of a sequence $\left\{a_{n}\right\}$ are equal to 2 . Is $\left\{a_{n}\right\}$ necessarily eventually in the interval $(1.9,2.1)$? Is it frequently in $(1.9,2.1)$?
3. (a) Show that the Cauchy Criterion implies the Monotone Convergence Theorem.
(b) Show that the Monotone Convergence Theorem implies the Nested Interval Property.
(c) Show that the Nested Interval Property implies the Axiom of Completeness.
4. Let $\left\{x_{n}\right\}$ be a bounded sequence. Prove statements (a) and (b) below directly twice, once each using the following equivalent definitions:
(i) $\limsup _{n \rightarrow \infty} x_{n}:=\sup \left\{x \in \mathbb{R}: x\right.$ is a subsequential limit of $\left.\left\{x_{n}\right\}\right\}$
(ii) $\limsup _{n \rightarrow \infty} x_{n}:=\inf _{n \in \mathbb{N}} \sup _{k \geq n} x_{k}$
(a) If $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$, then $\left|\limsup _{n \rightarrow \infty} x_{n}\right| \leq M$ also.
(b) If $\beta>\limsup _{n \rightarrow \infty} x_{n}$, then there exists a $N \in \mathbb{N}$ such that $x_{n}<\beta$ for all $n \geq N$.
5. (a) Let $\left\{x_{n}\right\}$ be a bounded sequence. Prove that if $\limsup _{n \rightarrow \infty}\left|x_{n}\right|=0$, then $\lim _{n \rightarrow \infty} x_{n}$ exists and equals 0 .
(b) Prove that a bounded sequence that does not converge always has at least two subsequences that converge to different limits.
(c) Find the limit inferior and limit superior of the sequence $\left\{a_{n}\right\}$ if $a_{n}=\lfloor\sin n\rfloor$ for all $n \in \mathbb{N}$.
(d) Find the set of all subsequential limits for the sequence $\left\{x_{n}\right\}$ if for all $n \in \mathbb{N}$
(i) $x_{n}=4+5(-1)^{\lfloor n / 2\rfloor}$
(ii) $x_{n}=\cos (n \pi / 3)$
(iii) $x_{n}=(-1)^{\lfloor n / 2\rfloor}+2(-1)^{\lfloor n / 3\rfloor}$
6. (a) Explain why there is no sequence whose set of subsequential limits is $\{1 / n: n \in \mathbb{N}\}$.
(b) Give an example of a sequence whose set of subsequential limits is $\{1 / n: n \in \mathbb{N}\} \cup\{0\}$.
7. Find the upper and lower limits, namely $\limsup _{n \rightarrow \infty} a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$, of the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{1}=0 ; \quad a_{2 m}=\frac{a_{2 m-1}}{2} ; \quad a_{2 m+1}=\frac{1}{2}+a_{2 m}
$$

8. For any two bounded sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of real numbers, prove that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

9. (a) Let $\left\{a_{n}\right\}$ denote a bounded sequence of positive reals. Prove that

$$
\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \leq \liminf _{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq \limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

(b) Can you define a sequnence $\left\{a_{n}\right\}$ for which the inequalities above are all strict?
(c) Use the result in part (a) above to prove that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.

More Basic Topology of \mathbb{R}

1. Prove that if $\left\{G_{1}, G_{2}, \ldots\right\}$ is a countable collection of dense, open subsets of \mathbb{R}, then the intersection $\bigcap_{n=1}^{\infty} G_{n}$ is not empty. Prove that this intersection is in fact dense in \mathbb{R}.
Hint: Imitate the proof that perfect subsets in \mathbb{R} are uncountable - I will help you with this in class!
2. This question deals with the G_{δ} and F_{σ} subsets of \mathbb{R} that have been discussed in lecture, see also Definition 3.5.1 in Abbott.
(a) Show that every closed set is a G_{δ} set and every open set is an F_{σ} set.

Hint: If F is closed, consider $O_{n}=\left\{x: \inf _{y \in F}|x-y|<1 / n\right\}$.
(b) Give an example of an F_{σ} set which is not a G_{δ} set.

Hint: Use Question 1.
(c) Give an example of a set which is neither an F_{σ} nor a G_{δ} set.

Math 6100/Bonus Problems

1. Prove that every open set in \mathbb{R} is the union of at most a countable collection of disjoint open intervals.
2. Construct a compact set of real numbers whose limit points form a countable set.
