Math 4100/6100 Assignment 4

Due date: 5:00 pm on Thursday the 22nd of September 2016

Basic Warm-up Problems (not to be handed in with the assignment)

- 1. Let $\{a_n\}$ be a convergent sequence with $\lim_{n \to \infty} a_n = a$. Prove the following two statements:
 - (a) If $a_n \leq b$ for all $n \in \mathbb{N}$, then $a \leq b$.
 - (b) If $\{a_n\}$ is increasing, then $a_n \leq a$ for all $n \in \mathbb{N}$.
- 2. (a) Prove that if a_n ≤ b_n ≤ c_n for all n ∈ N, and if lim a_n = lim c_n = L, then lim b_n = L as well.
 (b) Prove that the convergence of {a_n} implies the convergence of {|a_n|}. Is the converse true?

Sequential and Subsequential Limits

1. What happens if we reverse the order of the quantifiers in the definition of convergence of a sequence?

Definition: A sequence $\{a_n\}$ verconges to a if there exists an $\varepsilon > 0$ such that for all $N \in \mathbb{N}$ it is true that $n \ge N$ implies $|a_n - a| < \varepsilon$.

Give an example of a vercongent sequence. Can you give an example a vercongent sequence that is divergent? What exactly is being described in this strange definition?

- 2. Here are two slightly non-standard definitions that we discussed in class:
 - (i) A sequence $\{a_n\}$ is eventually in a set $V \subseteq \mathbb{R}$ if there exists an $N \in \mathbb{N}$ such that $a_n \in V$ for all $n \geq N$.
 - (ii) A sequence $\{a_n\}$ is *frequently* in a set $V \subseteq \mathbb{R}$ if, for every $N \in \mathbb{N}$, there exists an $n \ge N$ such that $a_n \in V$.
 - (a) Is the sequence $\{(-1)^n\}$ eventually or frequently in the set $\{1\}$?
 - (b) Which definition is stronger? Does frequently imply eventually or does eventually imply frequently?
 - (c) Suppose an infinite number of terms of a sequence $\{a_n\}$ are equal to 2. Is $\{a_n\}$ necessarily eventually in the interval (1.9, 2.1)? Is it frequently in (1.9, 2.1)?
- 3. (a) Show that the Cauchy Criterion implies the Monotone Convergence Theorem.
 - (b) Show that the Monotone Convergence Theorem implies the Nested Interval Property.
 - (c) Show that the Nested Interval Property implies the Axiom of Completeness.
- 4. Let $\{x_n\}$ be a bounded sequence. Prove statements (a) and (b) below directly <u>twice</u>, once each using the following equivalent definitions:
 - (i) $\limsup_{n \to \infty} x_n := \sup \{ x \in \mathbb{R} : x \text{ is a subsequential limit of } \{x_n\} \}$
 - (ii) $\limsup_{n \to \infty} x_n := \inf_{n \in \mathbb{N}} \sup_{k \ge n} x_k$
 - (a) If $|x_n| \leq M$ for all $n \in \mathbb{N}$, then $|\limsup x_n| \leq M$ also.
 - (b) If $\beta > \limsup_{n \to \infty} x_n$, then there exists a $N \in \mathbb{N}$ such that $x_n < \beta$ for all $n \ge N$.

- 5. (a) Let $\{x_n\}$ be a bounded sequence. Prove that if $\limsup_{n \to \infty} |x_n| = 0$, then $\lim_{n \to \infty} x_n$ exists and equals 0.
 - (b) Prove that a bounded sequence that does not converge always has at least two subsequences that converge to different limits.
 - (c) Find the limit inferior and limit superior of the sequence $\{a_n\}$ if $a_n = \lfloor \sin n \rfloor$ for all $n \in \mathbb{N}$.
 - (d) Find the set of all subsequential limits for the sequence $\{x_n\}$ if for all $n \in \mathbb{N}$

(i)
$$x_n = 4 + 5(-1)^{\lfloor n/2 \rfloor}$$
 (ii) $x_n = \cos(n\pi/3)$ (iii) $x_n = (-1)^{\lfloor n/2 \rfloor} + 2(-1)^{\lfloor n/3 \rfloor}$

- 6. (a) Explain why there is no sequence whose set of subsequential limits is $\{1/n : n \in \mathbb{N}\}$.
 - (b) Give an example of a sequence whose set of subsequential limits is $\{1/n : n \in \mathbb{N}\} \cup \{0\}$.
- 7. Find the upper and lower limits, namely $\limsup_{n \to \infty} a_n$ and $\liminf_{n \to \infty} a_n$, of the sequence $\{a_n\}$ defined by

$$a_1 = 0;$$
 $a_{2m} = \frac{a_{2m-1}}{2};$ $a_{2m+1} = \frac{1}{2} + a_{2m}.$

8. For any two bounded sequences $\{a_n\}$ and $\{b_n\}$ of real numbers, prove that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

9. (a) Let $\{a_n\}$ denote a bounded sequence of positive reals. Prove that

$$\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} \le \liminf_{n \to \infty} \sqrt[n]{a_n} \le \limsup_{n \to \infty} \sqrt[n]{a_n} \le \limsup_{n \to \infty} \frac{a_{n+1}}{a_n}$$

- (b) Can you define a sequence $\{a_n\}$ for which the inequalities above are all strict?
- (c) Use the result in part (a) above to prove that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

More Basic Topology of $\mathbb R$

- 1. Prove that if $\{G_1, G_2, ...\}$ is a countable collection of dense, open subsets of \mathbb{R} , then the intersection $\bigcap_{n=1}^{\infty} G_n$ is not empty. Prove that this intersection is in fact dense in \mathbb{R} . Hint: Imitate the proof that perfect subsets in \mathbb{R} are uncountable – I will help you with this in class!
- 2. This question deals with the G_{δ} and F_{σ} subsets of \mathbb{R} that have been discussed in lecture, see also Definition 3.5.1 in Abbott.
 - (a) Show that every closed set is a G_{δ} set and every open set is an F_{σ} set. Hint: If F is closed, consider $O_n = \{x : \inf_{y \in F} |x - y| < 1/n\}.$
 - (b) Give an example of an F_{σ} set which is not a G_{δ} set. Hint: Use Question 1.
 - (c) Give an example of a set which is neither an F_{σ} nor a G_{δ} set.

Math 6100/Bonus Problems

- 1. Prove that every open set in \mathbb{R} is the union of at most a countable collection of disjoint open intervals.
- 2. Construct a compact set of real numbers whose limit points form a countable set.