Exam 2

Math 4100 students: Answer any THREE of the following FIVE questions Math 6100 students: Answer any FOUR of the following FIVE questions

- 1. (a) Carefully state the Mean Value Theorem and use it to prove the following:
 - i. If $f : \mathbb{R} \to \mathbb{R}$ is differentiable with f'(x) = 0 for all $x \in \mathbb{R}$, then f must be constant on \mathbb{R} .
 - ii. If $f : \mathbb{R} \to \mathbb{R}$ is differentiable with $f'(x) \ge 0$ for all $x \in (0, \infty)$, then f is increasing on $(0, \infty)$.
 - (b) Suppose $f : \mathbb{R} \to \mathbb{R}$ has the property that

$$|f(x) - f(y)| \le |x - y|^2$$

for all $x, y \in \mathbb{R}$. Prove that f is constant on \mathbb{R} .

(c) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on $[0, \infty)$, differentiable on $(0, \infty)$, f(0) = 0, and f' is increasing on $(0, \infty)$. Prove that the function $g : (0, \infty) \to \mathbb{R}$ defined by

$$g(x) = \frac{f(x)}{x}$$

is increasing.

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be bounded.
 - (a) Recall that the oscillation of f at x is define to be

$$\operatorname{Osc}(f, x) := \lim_{\delta \to 0^+} \sup_{y, z \in V_{\delta}(x)} |f(y) - f(z)|.$$

Briefly explain why this is a well defined notion.

- (b) Prove that f is continuous at x if and only if Osc(f, x) = 0.
- (c) Prove that for every $\varepsilon > 0$ the set $A_{\varepsilon} = \{x \in \mathbb{R} : \operatorname{Osc}(f, x) \ge \varepsilon\}$ is closed and deduce from this that the set of all points at which f is discontinuous is an F_{σ} set¹.
- 3. (a) Let $\{f_n\}$ is a sequence of continuous functions on a compact set $K \subseteq \mathbb{R}$. Prove that if $\{f_n\}$ is decreasing² and converges pointwise to 0 on K, then $f_n \to 0$ uniformly on K.
 - (b) Prove that if $f_n \to f$ uniform on [a, b] and each f_n is integrable, then f is also integrable and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) \, dx = \int_{a}^{b} f(x) \, dx$$

4. Let $\{r_n\}$ be any enumeration of all the rationals in [0,1] and define $f:[0,1] \to \mathbb{R}$ by setting

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = r_n \\ 0 & \text{if } x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

- (a) Prove that $\lim_{x\to c} f(x) = 0$ for every $c \in [0,1]$ and conclude that set of all points at which f is discontinuous is precisely $[0,1] \cap \mathbb{Q}$.
- (b) Prove, directly from the definition, that f is integrable on [0, 1] and $\int_0^1 f(x) dx = 0$.
- 5. (a) Prove that if f and g are two continuous functions on [a, b] and $g(x) \ge 0$ for all $x \in [a, b]$, then there must exist a point $c \in (a, b)$ such that

$$\int_{a}^{b} f(x)g(x) \, dx = f(c) \cdot \int_{a}^{b} g(x) \, dx.$$

- (b) Let f be a differentiable function on [a, b].
 - i. Prove that if f'(a) < L < f'(b), then there must exist a point $c \in (a, b)$ such that f'(c) = L.
 - ii. Conclude from part (i) above that f' cannot have any simple discontinuities on [a, b].

¹ Recall that an F_{σ} set is a countable union of closed sets.

² by which we mean that $f_n(x) \ge f_{n+1}(x)$ for all $x \in K$ and $n \in \mathbb{N}$.