Exam 2

Math 4100 students: Answer any THREE of the following FIVE questions Math 6100 students: Answer any FOUR of the following FIVE questions

1. (a) Carefully state the Mean Value Theorem and use it to prove the following:
i. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable with $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$, then f must be constant on \mathbb{R}.
ii. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable with $f^{\prime}(x) \geq 0$ for all $x \in(0, \infty)$, then f is increasing on $(0, \infty)$.
(b) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that

$$
|f(x)-f(y)| \leq|x-y|^{2}
$$

for all $x, y \in \mathbb{R}$. Prove that f is constant on \mathbb{R}.
(c) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on $[0, \infty)$, differentiable on $(0, \infty), f(0)=0$, and f^{\prime} is increasing on $(0, \infty)$. Prove that the function $g:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
g(x)=\frac{f(x)}{x}
$$

is increasing.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bounded.
(a) Recall that the oscillation of f at x is define to be

$$
\operatorname{Osc}(f, x):=\lim _{\delta \rightarrow 0^{+}} \sup _{y, z \in V_{\delta}(x)}|f(y)-f(z)|
$$

Briefly explain why this is a well defined notion.
(b) Prove that f is continuous at x if and only if $\operatorname{Osc}(f, x)=0$.
(c) Prove that for every $\varepsilon>0$ the set $A_{\varepsilon}=\{x \in \mathbb{R}: \operatorname{Osc}(f, x) \geq \varepsilon\}$ is closed and deduce from this that the set of all points at which f is discontinuous is an F_{σ} set 1.
3. (a) Let $\left\{f_{n}\right\}$ is a sequence of continuous functions on a compact set $K \subseteq \mathbb{R}$. Prove that if $\left\{f_{n}\right\}$ is decreasing ${ }^{2}$ and converges pointwise to 0 on K, then $f_{n} \rightarrow 0$ uniformly on K.
(b) Prove that if $f_{n} \rightarrow f$ uniform on $[a, b]$ and each f_{n} is integrable, then f is also integrable and

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

4. Let $\left\{r_{n}\right\}$ be any enumeration of all the rationals in $[0,1]$ and define $f:[0,1] \rightarrow \mathbb{R}$ by setting

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } x=r_{n} \\ 0 & \text { if } x \in[0,1] \backslash \mathbb{Q}\end{cases}
$$

(a) Prove that $\lim _{x \rightarrow c} f(x)=0$ for every $c \in[0,1]$ and conclude that set of all points at which f is discontinuous is precisely $[0,1] \cap \mathbb{Q}$.
(b) Prove, directly from the definition, that f is integrable on $[0,1]$ and $\int_{0}^{1} f(x) d x=0$.
5. (a) Prove that if f and g are two continuous functions on $[a, b]$ and $g(x) \geq 0$ for all $x \in[a, b]$, then there must exist a point $c \in(a, b)$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \cdot \int_{a}^{b} g(x) d x
$$

(b) Let f be a differentiable function on $[a, b]$.
i. Prove that if $f^{\prime}(a)<L<f^{\prime}(b)$, then there must exist a point $c \in(a, b)$ such that $f^{\prime}(c)=L$.
ii. Conclude from part (i) above that f^{\prime} cannot have any simple discontinuities on $[a, b]$.

[^0]
[^0]: ${ }^{1}$ Recall that an F_{σ} set is a countable union of closed sets.
 ${ }^{2}$ by which we mean that $f_{n}(x) \geq f_{n+1}(x)$ for all $x \in K$ and $n \in \mathbb{N}$.

