
Math 3100 Spring 2018

Additional Final Exam Practice Questions

1. Let {an} be a sequence in R with lim
n→∞

an = L.

(a) Give the definition of lim
n→∞

an = L.

(b) Use the definition of convergence given above to prove that

lim
n→∞

3n+ 5

n− 3
= 3.

(c) Give a direct proof, using the definition given in (a), of the fact that lim
n→∞

a2n = L2.

(d) Prove that if an < 10 for all n ∈ N, then L ≤ 10 and give an example showing that for
certain sequences {an} the limit L could in fact equal 10.

2. (a) Carefully state the definition of the supremum (the least upper bound) of a set of real
numbers and the Axiom of Completeness (the least upper bound axiom).

(b) Let f : [0, 1]→ R be a continuous function with f(0) = 0 and f(1) = 12 and let

A := {x ∈ [0, 1] : f(x) < 10}.

i. Prove that α := sup(A) exists.

ii. Show that there exists a sequence {αn} in A with the property that lim
n→∞

αn = α.

iii. Conclude that f(α) ≤ 10.

** Bonus points: Show that in fact f(α) = 10.

3. (a) Carefully state the Monotone Convergence Theorem.

(b) Let {an} be defined recursively by a1 = 1 and an+1 =
3an + 2

an + 2
for each n ∈ N.

Prove that {an} converges and find its limit.

(c) Let {xn} be a bounded sequence of real numbers.

i. Carefully state the definition of lim sup
n→∞

xn and justify why it always exists for such

sequences.

ii. Prove that if {zn} is a sequence of real numbers such that 0 ≤ zn ≤ xn for all n ∈ N,
then

lim sup
n→∞

zn ≤ lim sup
n→∞

xn.

4. (a) Carefully state the definition of a sequence of real numbers {an} being a Cauchy se-
quence.

(b) Prove that every convergent sequence is a Cauchy sequence.

(c) i. Prove, using the definition given in (a), that Cauchy sequences are always bounded.



ii. Carefully state the Bolzano-Weierstrass Theorem and use this to show that Cauchy
sequences of real numbers are always convergent.

(d) i. State the so-called Cauchy Criterion for Infinite Series.

ii. Prove that if
∞∑
n=1

an is absolutely convergent then it must also converge and satisfy

∣∣∣∣∣
∞∑
n=1

an

∣∣∣∣∣ ≤
∞∑
n=1

|an|.

Hint: Show that for any ε > 0 there exists an N such that

∣∣∣∣∣ ∞∑
n=N+1

an

∣∣∣∣∣ ≤ ∞∑
n=N+1

|an| ≤ ε.

5. (a) State the ε-δ definition of lim
x→x0

f(x) = L.

(b) Determine the following limit and use the definition from part (a) to prove your answer:

lim
x→2

2x+ 1

x2 + 1
.

(c) Prove that lim
x→x0

f(x) = L if and only if lim
n→∞

f(xn) = L for all sequences {xn} in R\{x0}
with lim

n→∞
xn = x0.

(d) Let

g(x) =

{
1 if x ∈ Q
0 if x ∈ R \Q

.

i. Carefully argue that g is discontinuous at 0 (it is of course discontinuous at every
point of R).

ii. Let h(x) = xg(x) for every x ∈ R. Prove that h is continuous at 0, but is not
differentiable at 0.

6. (a) Prove that if f : R→ R is differentiable at x0, then

f ′(x0) = lim
h→0

f(x0 + h)− f(x0 − h)

2h
.

(b) i. Prove that if f : R→ R is three times differentiable on [x0, x0 + h], then

f(x0 + h) = f(x0) + f ′(x0)h+
f ′′(x0)

2
h2 +

f ′′′(c)

6
h3

for some c ∈ (x0, x0 + h).

Hint: Apply the Generalized MVT to f(x0 + h)− f(x0)− f ′(x0)h−
f ′′(x0)

2
h2 & h3.

ii. Prove that if f : R→ R has the property that f ′′′ is continuous on (x0 − h, x0 + h),
then

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− f ′′′(c)

6
h2

for some c ∈ (x0 − h, x0 + h).


