Additional Final Exam Practice Questions

1. Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R} with $\lim _{n \rightarrow \infty} a_{n}=L$.
(a) Give the definition of $\lim _{n \rightarrow \infty} a_{n}=L$.
(b) Use the definition of convergence given above to prove that

$$
\lim _{n \rightarrow \infty} \frac{3 n+5}{n-3}=3
$$

(c) Give a direct proof, using the definition given in (a), of the fact that $\lim _{n \rightarrow \infty} a_{n}^{2}=L^{2}$.
(d) Prove that if $a_{n}<10$ for all $n \in \mathbb{N}$, then $L \leq 10$ and give an example showing that for certain sequences $\left\{a_{n}\right\}$ the limit L could in fact equal 10 .
2. (a) Carefully state the definition of the supremum (the least upper bound) of a set of real numbers and the Axiom of Completeness (the least upper bound axiom).
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function with $f(0)=0$ and $f(1)=12$ and let

$$
A:=\{x \in[0,1]: f(x)<10\} .
$$

i. Prove that $\alpha:=\sup (A)$ exists.
ii. Show that there exists a sequence $\left\{\alpha_{n}\right\}$ in A with the property that $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$.
iii. Conclude that $f(\alpha) \leq 10$.
** Bonus points: Show that in fact $f(\alpha)=10$.
3. (a) Carefully state the Monotone Convergence Theorem.
(b) Let $\left\{a_{n}\right\}$ be defined recursively by $a_{1}=1$ and $a_{n+1}=\frac{3 a_{n}+2}{a_{n}+2}$ for each $n \in \mathbb{N}$. Prove that $\left\{a_{n}\right\}$ converges and find its limit.
(c) Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers.
i. Carefully state the definition of $\lim \sup x_{n}$ and justify why it always exists for such sequences.
ii. Prove that if $\left\{z_{n}\right\}$ is a sequence of real numbers such that $0 \leq z_{n} \leq x_{n}$ for all $n \in \mathbb{N}$, then

$$
\limsup _{n \rightarrow \infty} z_{n} \leq \limsup _{n \rightarrow \infty} x_{n} .
$$

4. (a) Carefully state the definition of a sequence of real numbers $\left\{a_{n}\right\}$ being a Cauchy sequence.
(b) Prove that every convergent sequence is a Cauchy sequence.
(c) i. Prove, using the definition given in (a), that Cauchy sequences are always bounded.
ii. Carefully state the Bolzano-Weierstrass Theorem and use this to show that Cauchy sequences of real numbers are always convergent.
(d) i. State the so-called Cauchy Criterion for Infinite Series.
ii. Prove that if $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent then it must also converge and satisfy

$$
\left|\sum_{n=1}^{\infty} a_{n}\right| \leq \sum_{n=1}^{\infty}\left|a_{n}\right| .
$$

Hint: Show that for any $\varepsilon>0$ there exists an N such that $\left|\sum_{n=N+1}^{\infty} a_{n}\right| \leq \sum_{n=N+1}^{\infty}\left|a_{n}\right| \leq \varepsilon$.
5. (a) State the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow x_{0}} f(x)=L$.
(b) Determine the following limit and use the definition from part (a) to prove your answer:

$$
\lim _{x \rightarrow 2} \frac{2 x+1}{x^{2}+1}
$$

(c) Prove that $\lim _{x \rightarrow x_{0}} f(x)=L$ if and only if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$ for all sequences $\left\{x_{n}\right\}$ in $\mathbb{R} \backslash\left\{x_{0}\right\}$ with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$.
(d) Let

$$
g(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in \mathbb{Q} \\
0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}
\end{array} .\right.
$$

i. Carefully argue that g is discontinuous at 0 (it is of course discontinuous at every point of \mathbb{R}).
ii. Let $h(x)=x g(x)$ for every $x \in \mathbb{R}$. Prove that h is continuous at 0 , but is not differentiable at 0 .
6. (a) Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x_{0}, then

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h} .
$$

(b) i. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is three times differentiable on $\left[x_{0}, x_{0}+h\right]$, then

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{f^{\prime \prime}\left(x_{0}\right)}{2} h^{2}+\frac{f^{\prime \prime \prime}(c)}{6} h^{3}
$$

for some $c \in\left(x_{0}, x_{0}+h\right)$.
Hint: Apply the Generalized MVT to $f\left(x_{0}+h\right)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) h-\frac{f^{\prime \prime}\left(x_{0}\right)}{2} h^{2} \xi h^{3}$.
ii. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that $f^{\prime \prime \prime}$ is continuous on $\left(x_{0}-h, x_{0}+h\right)$, then

$$
f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}-\frac{f^{\prime \prime \prime}(c)}{6} h^{2}
$$

for some $c \in\left(x_{0}-h, x_{0}+h\right)$.

