Math 3100

Additional Final Exam Practice Questions

- 1. Let $\{a_n\}$ be a sequence in \mathbb{R} with $\lim_{n \to \infty} a_n = L$.
 - (a) Give the definition of $\lim_{n \to \infty} a_n = L$.
 - (b) Use the definition of convergence given above to prove that

$$\lim_{n \to \infty} \frac{3n+5}{n-3} = 3.$$

- (c) Give a direct proof, using the definition given in (a), of the fact that $\lim_{n \to \infty} a_n^2 = L^2$.
- (d) Prove that if $a_n < 10$ for all $n \in \mathbb{N}$, then $L \leq 10$ and give an example showing that for certain sequences $\{a_n\}$ the limit L could in fact equal 10.
- 2. (a) Carefully state the definition of the *supremum* (the least upper bound) of a set of real numbers and the *Axiom of Completeness* (the least upper bound axiom).
 - (b) Let $f:[0,1] \to \mathbb{R}$ be a continuous function with f(0) = 0 and f(1) = 12 and let

$$A := \{ x \in [0,1] : f(x) < 10 \}.$$

- i. Prove that $\alpha := \sup(A)$ exists.
- ii. Show that there exists a sequence $\{\alpha_n\}$ in A with the property that $\lim_{n \to \infty} \alpha_n = \alpha$.
- iii. Conclude that $f(\alpha) \leq 10$.
- ** Bonus points: Show that in fact $f(\alpha) = 10$.
- 3. (a) Carefully state the Monotone Convergence Theorem.
 - (b) Let $\{a_n\}$ be defined recursively by $a_1 = 1$ and $a_{n+1} = \frac{3a_n + 2}{a_n + 2}$ for each $n \in \mathbb{N}$. Prove that $\{a_n\}$ converges and find its limit.
 - (c) Let $\{x_n\}$ be a bounded sequence of real numbers.
 - i. Carefully state the definition of $\limsup_{n \to \infty} x_n$ and justify why it always exists for such sequences.
 - ii. Prove that if $\{z_n\}$ is a sequence of real numbers such that $0 \le z_n \le x_n$ for all $n \in \mathbb{N}$, then

$$\limsup_{n \to \infty} z_n \le \limsup_{n \to \infty} x_n.$$

- 4. (a) Carefully state the definition of a sequence of real numbers $\{a_n\}$ being a Cauchy sequence.
 - (b) Prove that every convergent sequence is a Cauchy sequence.
 - (c) i. Prove, using the definition given in (a), that Cauchy sequences are always bounded.

- ii. Carefully state the *Bolzano-Weierstrass Theorem* and use this to show that Cauchy sequences of real numbers are always convergent.
- (d) i. State the so-called Cauchy Criterion for Infinite Series.
 - ii. Prove that if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent then it must also converge and satisfy

$$\left|\sum_{n=1}^{\infty} a_n\right| \le \sum_{n=1}^{\infty} |a_n|.$$

Hint: Show that for any $\varepsilon > 0$ *there exists an* N *such that* $\left| \sum_{n=N+1}^{\infty} a_n \right| \le \sum_{n=N+1}^{\infty} |a_n| \le \varepsilon$.

- 5. (a) State the ε - δ definition of $\lim_{x \to x_0} f(x) = L$.
 - (b) Determine the following limit and use the definition from part (a) to prove your answer:

$$\lim_{x \to 2} \frac{2x+1}{x^2+1}.$$

- (c) Prove that $\lim_{x \to x_0} f(x) = L$ if and only if $\lim_{n \to \infty} f(x_n) = L$ for all sequences $\{x_n\}$ in $\mathbb{R} \setminus \{x_0\}$ with $\lim_{n \to \infty} x_n = x_0$.
- (d) Let

$$g(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

- i. Carefully argue that g is discontinuous at 0 (it is of course discontinuous at every point of \mathbb{R}).
- ii. Let h(x) = xg(x) for every $x \in \mathbb{R}$. Prove that h is continuous at 0, but is not differentiable at 0.
- 6. (a) Prove that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 , then

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$

(b) i. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is three times differentiable on $[x_0, x_0 + h]$, then

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + \frac{f'''(c)}{6}h^3$$

for some $c \in (x_0, x_0 + h)$.

Hint: Apply the Generalized MVT to $f(x_0+h) - f(x_0) - f'(x_0)h - \frac{f''(x_0)}{2}h^2 \ \ \mathcal{E} h^3$.

ii. Prove that if $f : \mathbb{R} \to \mathbb{R}$ has the property that f''' is continuous on $(x_0 - h, x_0 + h)$, then

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{f'''(c)}{6}h^2$$

for some $c \in (x_0 - h, x_0 + h)$.