Sample Exam 3 – Version 2

No calculators. Show your work. Give full explanations. Good luck!

- 1. (7 points)
 - (a) Carefully state the Intermediate Value Theorem.
 - (b) Let f be a continuous function on the closed interval [0, 1] with range also contained in [0, 1]. Prove that f must have a fixed point; that is, show that f(x) = x for at least one value of $x \in [0, 1]$.
- 2. (15 points)
 - (a) Carefully state the Mean Value Theorem and use it to prove the following:
 - i. If $f : \mathbb{R} \to \mathbb{R}$ is differentiable with f'(x) = 0 for all $x \in \mathbb{R}$, then f must be constant on \mathbb{R} .
 - ii. If $f : \mathbb{R} \to \mathbb{R}$ is differentiable with $f'(x) \ge 0$ for all $x \in (0, \infty)$, then f is increasing on $(0, \infty)$.
 - (b) Suppose $f : \mathbb{R} \to \mathbb{R}$ has the property that

$$|f(x) - f(y)| \le |x - y|^2$$

for all $x, y \in \mathbb{R}$. Prove that f is constant on \mathbb{R} .

(c) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on $[0, \infty)$, differentiable on $(0, \infty)$, f(0) = 0, and f' is increasing on $(0, \infty)$. Prove that the function $g : (0, \infty) \to \mathbb{R}$ defined by

$$g(x) = \frac{f(x)}{x}$$

is increasing.

3. (10 points) Let
$$f(x) = \begin{cases} x^4 \sin(x^{-2}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- (a) Show that f is differentiable at 0 and compute f'(x) for all $x \in \mathbb{R}$.
- (b) Is f' continuous at 0? Give your reasoning.
- (c) Is f' differentiable at 0? Give your reasoning.
- 4. (8 points)
 - (a) Find the 4th order Maclaurin polynomial for $f(x) = \frac{\cos(x^2)}{1+x}$.
 - (b) Use part (a) to find the value of $f^{(4)}(0)$ without differentiating.
- 5. (10 points)
 - (a) Carefully state the Lagrangian Remainder Estimate for Maclaurin series.
 - (b) Use the Lagrangian Remainder Estimate to determine the following:
 - i. An estimate for the accuracy of approximating $\sin x$ by $x x^3/6$ when |x| < 1/2.
 - ii. Values of x for which the accuracy of approximating $\sin x$ by $x x^3/6$ is less than 10^{-3} .
 - $Use \ are \ \underline{not} \ permitted \ to \ use \ the \ Alternating \ Series \ Remainder \ Estimate \ above.$
 - (c) Obtain, by any means, an estimate for the accuracy of approximating

$$\int_0^1 \frac{\sin x}{x} \, dx \quad \text{by} \quad 1 - \frac{1}{18}.$$