Sample Exam 3 - Version 2

No calculators. Show your work. Give full explanations. Good luck!

1. (7 points)
(a) Carefully state the Intermediate Value Theorem.
(b) Let f be a continuous function on the closed interval $[0,1]$ with range also contained in $[0,1]$. Prove that f must have a fixed point; that is, show that $f(x)=x$ for at least one value of $x \in[0,1]$.
2. (15 points)
(a) Carefully state the Mean Value Theorem and use it to prove the following:
i. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable with $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$, then f must be constant on \mathbb{R}.
ii. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable with $f^{\prime}(x) \geq 0$ for all $x \in(0, \infty)$, then f is increasing on $(0, \infty)$.
(b) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that

$$
|f(x)-f(y)| \leq|x-y|^{2}
$$

for all $x, y \in \mathbb{R}$. Prove that f is constant on \mathbb{R}.
(c) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on $[0, \infty)$, differentiable on $(0, \infty), f(0)=0$, and f^{\prime} is increasing on $(0, \infty)$. Prove that the function $g:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
g(x)=\frac{f(x)}{x}
$$

is increasing.
3. (10 points) Let $f(x)=\left\{\begin{array}{ll}x^{4} \sin \left(x^{-2}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$.
(a) Show that f is differentiable at 0 and compute $f^{\prime}(x)$ for all $x \in \mathbb{R}$.
(b) Is f^{\prime} continuous at 0 ? Give your reasoning.
(c) Is f^{\prime} differentiable at 0 ? Give your reasoning.
4. (8 points)
(a) Find the 4th order Maclaurin polynomial for $f(x)=\frac{\cos \left(x^{2}\right)}{1+x}$.
(b) Use part (a) to find the value of $f^{(4)}(0)$ without differentiating.
5. (10 points)
(a) Carefully state the Lagrangian Remainder Estimate for Maclaurin series.
(b) Use the Lagrangian Remainder Estimate to determine the following:
i. An estimate for the accuracy of approximating $\sin x$ by $x-x^{3} / 6$ when $|x| \leq 1 / 2$.
ii. Values of x for which the accuracy of approximating $\sin x$ by $x-x^{3} / 6$ is less than 10^{-3}.

Use are not permitted to use the Alternating Series Remainder Estimate above.
(c) Obtain, by any means, an estimate for the accuracy of approximating

$$
\int_{0}^{1} \frac{\sin x}{x} d x \quad \text { by } \quad 1-\frac{1}{18}
$$

