Math 3100 Spring 2018

Sample Exam 2 – Version 1

No calculators. Show your work. Give full explanations. Good luck!

1. (15 points)

- (a) Carefully state what it means to say that $\sum_{n=1}^{\infty} a_n$ converges to A and prove that if this indeed the case, then $\sum_{n=1}^{\infty} (10a_n)$ converges to 10A.
- (b) Prove that if $b_n > 0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} b_n^2$ also converges.
- (c) Prove that if a series converges absolutely, then it is convergent.

2. (15 points)

(a) Determine if the following series are absolutely convergent, conditionally convergent, or divergent. Justify your answers.

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$$
 (ii) $\sum_{n=1}^{\infty} \frac{\log n}{n^{3/2}}$

(b) Use the "Cauchy Condensation Test" to determine the convergence or divergence of

$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

- (c) Find all $x \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \frac{(-2)^n x^{2n}}{n}$ converges.
- 3. (20 points) Let $f: \mathbb{R} \to \mathbb{R}$.
 - (a) Carefully state the ε - δ definition of what it means for f to be *continuous* at x_0 and conclude that if f is continuous at x_0 with $f(x_0) = 2$, then there exists $\delta > 0$ such that $f(x) \ge 1$ whenever $|x x_0| < \delta$.
 - (b) Use the definition from part (a) to prove that $f(x) = \frac{1}{x}$ is continuous at $x_0 = 1$.
 - (c) Prove that f is continuous at x_0 if and only if $\lim_{n\to\infty} f(x_n) = f(x_0)$ for all sequences with $\lim_{n\to\infty} x_n = x_0$.