Math 3100

Spring 2018

Sample Exam 1 – Version 3

No calculators. Show your work. Give full explanations. Good luck!

1. (15 points) Evaluate the following limits or explain why it is divergent.

(a)
$$\lim_{n \to \infty} \left(\frac{2n+1}{3-n}\right)^{3}$$

(b)
$$\lim_{n \to \infty} \left((-1)^{n} + \frac{1}{n}\right)^{3}$$

(c)
$$\lim_{n \to \infty} \frac{\cos(n)}{n^{2}}$$

(d)
$$\lim_{n \to \infty} \frac{n!+n}{2^{n}+3n!}$$

(e)
$$\lim_{n \to \infty} \frac{n+\log(n)}{n+1}$$

- 2. (20 points)
 - (a) Carefully state the definition of the convergence of a sequence $\{a_n\}$ to a real number L.
 - (b) Using the definition of convergence, prove that

$$\lim_{n \to \infty} \frac{5n+4}{2n-7} = 5/2.$$

- 3. (15 points)
 - (a) Carefully state the definition of a sequence $\{a_n\}$ being bounded above.
 - (b) Use this definition to prove that the sequence $a_n = \sqrt{n}$ is <u>not</u> bounded above.
- 4. (20 points) Assume that $\lim_{n\to\infty} b_n = L > 0$. Using <u>only</u> the definition of convergence prove the following two statements;
 - (a) There exists M > 0 such that $|b_n| \leq M$ for all $n \in \mathbb{N}$.
 - (b) There exists some $N \in \mathbb{N}$ such that if n > N, then $b_n > L/2$.
- 5. (15 points) Prove that if $\{a_n\}$ is an increasing sequence with $\lim_{n \to \infty} a_n = L$, then $a_n \leq L$ for all $n \in \mathbb{N}$.
- 6. (Bonus points) Let $\{a_n\}$ be the Fibonacci sequence given recursively by $a_1 = 1$ $a_2 = 1$ and $a_{n+1} = a_n + a_{n-1}$ for n > 1. We now construct a new sequence $\{b_n\}$ by setting $b_n = a_{n+1}/a_n$ for all $n \in \mathbb{N}$.
 - (a) Show that $\{b_n\}$ satisfies the recursive formula $b_{n+1} = 1 + 1/b_n$ with $b_1 = 1$, and that $1 \le b_n \le 2$ for all $n \in \mathbb{N}$.
 - (b) It follows from the formula in (a) that $b_{n+2} = 1 + \frac{b_n}{1+b_n}$ for all $n \in \mathbb{N}$, using this and induction prove that
 - i. the subsequence $\{b_{2n}\}$ is decreasing
 - ii. the subsequence $\{b_{2n-1}\}$ is increasing
 - (c) Conclude that $\{b_n\}$ converges and $\lim_{n \to \infty} b_n = \frac{1 + \sqrt{5}}{2}$