Infinite Series

1. Important infinite series

Geometric series:
$$\sum_{n=0}^{\infty} r^n$$
 converges $\iff |r| < 1$. If $|r| < 1$, then $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$.
The *p*-series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges $\iff p > 1$.

2. Series Tests

Definition. Given a sequence $\{a_n\}$ let $s_n = a_1 + \cdots + a_n$ denote its *n*th partial sum, then

$$\{a_n\}$$
 summable $\iff \sum_{n=1}^{\infty} a_n$ converges $\iff \underline{\{s_n\}}$ converges.

Theorem 1 (Cauchy Criterion).

$$\sum_{n=1}^{\infty} a_n \quad converges \quad \Longleftrightarrow \quad for \ every \ \varepsilon > 0, \ there \ exists \ N \ such \ that \ \left| \sum_{k=m+1}^n a_k \right| < \varepsilon \ if \ n > m > N.$$

Corollary 2. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem 3. If $a_n \ge 0$ and $s_n = a_1 + \cdots + a_n$, then

$$\sum_{n=1}^{\infty} a_n \quad converges \quad \Longleftrightarrow \quad \{s_n\} \quad bounded.$$

Theorem 4 (Cauchy Condensation Test). If $\{a_n\}$ is a decreasing sequence of non-negative terms, then

$$\sum_{n=1}^{\infty} a_n \quad converges \quad \Longleftrightarrow \quad \sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots \quad converges.$$

Theorem 5 (Direct Comparison Test). If $|a_n| \leq b_n$ for all sufficiently large $n \in \mathbb{N}$, then

$$\sum_{n=1}^{\infty} b_n \quad converges \quad \Longrightarrow \quad \sum_{n=1}^{\infty} a_n \quad converges.$$

Corollary 6 (Direct Comparison Test for Divergence).

If
$$0 \le b_n \le a_n$$
 for all sufficiently large $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Corollary 7 (Absolute Convergence implies Convergence).

If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Corollary 8 (Limit Comparison Test). Suppose $a_n > 0$, $b_n > 0$, and $\lim_{n \to \infty} \frac{a_n}{b_n} = L \neq 0$, then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \sum_{n=1}^{\infty} b_n \text{ converges.}$$

Theorem 9 (Root Test – Mainly a Theoretical Tool). Let $\alpha = \limsup \sqrt[n]{|a_n|}$.

- If $\alpha < 1$, then $\sum_{n=1}^{\infty} |a_n|$ converges.
- If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Recall, by considering for example $\sum \frac{1}{n}$ and $\sum \frac{1}{n^2}$, that the Root Test is inconclusive if $\alpha = 1$.

Theorem 10 (Ratio Test – A Computational Tool). Let $\{a_n\}$ be a sequence of non-zero terms.

- If $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, so in particular if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\sum_{n=1}^{\infty} |a_n|$ converges.
- If $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ infinitely often, so in particular if $\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Recall, again by considering $\sum \frac{1}{n}$ and $\sum \frac{1}{n^2}$, that the Ratio Test is inconclusive if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$.

Although Theorem 10 can easily be established directly, it can also deduced as a consequence of Theorem 9 via the following

Lemma 11. If $\{c_n\}$ is any sequence of positive real numbers, then $\liminf_{n \to \infty} \frac{c_{n+1}}{c_n} \leq \liminf_{n \to \infty} \sqrt[n]{c_n} \leq \limsup_{n \to \infty} \sqrt[n]{c_n} \leq \limsup_{n \to \infty} \frac{c_{n+1}}{c_n}.$

Finally we have:

Theorem 12 (Alternating Series Test).

If
$$\{b_n\}$$
 is decreasing with limit 0, then $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ converges.

3. Strategy for analyzing $\sum_{n=1}^{\infty} a_n$

1. Does $a_n \to 0$?

If NO, then $\sum_{n=1}^{\infty} a_n$ diverges.

2. Does $\sum_{n=1}^{\infty} |a_n|$ converge?

If YES, then $\sum_{n=1}^{\infty} a_n$ converges absolutely, and hence converges. Try using

- geometric series and *p*-series
- "direct" or "limit" comparison tests
- ratio (or root) test
- Cauchy condensation test (or integral test if you are familiar with that)
- 3. If $\sum_{n=1}^{\infty} |a_n|$ does not converge or you cannot decide, then try
 - alternating series test

If this test applies, then $\sum_{n=1}^{\infty} a_n$ converges.

Recall that if

 $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges, then we say $\sum_{n=1}^{\infty} a_n$ converges conditionally.